List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4294323/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrospun nano-fibre mats with antibacterial properties from quaternised chitosan and poly(vinyl) Tj ETQq1 1	0.784314 1.1	rgBT /Overlo
2	Novel antibacterial fibers of quaternized chitosan and poly(vinyl pyrrolidone) prepared by electrospinning. European Polymer Journal, 2007, 43, 1112-1122.	2.6	245
3	Electrospun Nonâ€Woven Nanofibrous Hybrid Mats Based on Chitosan and PLA for Woundâ€Dressing Applications. Macromolecular Bioscience, 2009, 9, 102-111.	2.1	184
4	Preparation, characterization and biological activity of Schiff base compounds derived from 8-hydroxyquinoline-2-carboxaldehyde and Jeffamines ED®. European Polymer Journal, 2002, 38, 989-999.	2.6	128
5	Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications. Materials Science and Engineering C, 2014, 38, 161-169.	3.8	116
6	Electrospun Antibacterial Chitosan-Based Fibers. Macromolecular Bioscience, 2013, 13, 860-872.	2.1	115
7	Drug-loaded electrospun materials in wound-dressing applications and in local cancer treatment. Expert Opinion on Drug Delivery, 2013, 10, 469-483.	2.4	108
8	Electrospinning of poly(vinyl pyrrolidone)–iodine complex and poly(ethylene oxide)/poly(vinyl) Tj ETQq0 0 0 European Polymer Journal, 2007, 43, 1609-1623.	rgBT /Overl 2.6	ock 10 Tf 50 102
9	Polylactide Stereocomplex-Based Electrospun Materials Possessing Surface with Antibacterial and Hemostatic Properties. Biomacromolecules, 2010, 11, 151-159.	2.6	80
10	Polylactide (PLA)-Based Electrospun Fibrous Materials Containing Ionic Drugs as Wound Dressing Materials: A Review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 657-671.	1.8	80
11	Polyelectrolyte Complexes between (Cross-linked)N-Carboxyethylchitosan and (Quaternized) Poly[2-(dimethylamino)ethyl methacrylate]:Â Preparation, Characterization, and Antibacterial Properties. Biomacromolecules, 2007, 8, 976-984.	2.6	75
12	Amphiphilic Poly(<scp>d</scp> - or) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 312 Td (<scp>l</scp> -lactide)- <i>b< Copolymers: Controlled Synthesis, Characterization, and Stereocomplex Formation. Biomacromolecules, 2009, 10, 1217-1223.</i>	/i>-poly(<i> 2.6</i>	N, <i>N68</i>
13	Poly(l-lactide) and poly(butylene succinate) immiscible blends: From electrospinning to biologically active materials. Materials Science and Engineering C, 2014, 41, 119-126.	3.8	64
14	Hydrolytic degradation of PLA/PEO/PLA triblock copolymers prepared in the presence of Zn metal or CaH2. Polymer, 1998, 39, 5421-5430.	1.8	63
15	Preparation of chitosan-containing nanofibres by electrospinning of chitosan/poly(ethylene oxide) blend solutions. E-Polymers, 2004, 4, .	1.3	63
16	Electrospun Chitosanâ€Coated Fibers of Poly(<scp>L</scp> â€lactide) and Poly(<scp>L</scp> â€lactide)/Poly(ethylene glycol): Preparation and Characterization. Macromolecular Bioscience, 2008, 8, 153-162.	2.1	62
17	Antibacterial fluoroquinolone antibiotic-containing fibrous materials from poly(l-lactide-co-d,l-lactide) prepared by electrospinning. European Journal of Pharmaceutical Sciences, 2012, 47, 642-651.	1.9	59
18	Electrospinning/electrospraying vs. electrospinning: A comparative study on the design of poly(l-lactide)/zinc oxide non-woven textile. Applied Surface Science, 2014, 311, 842-850.	3.1	59

#	Article	IF	CITATIONS
19	Hybrid nanofibrous yarns based on N-carboxyethylchitosan and silver nanoparticles with antibacterial activity prepared by self-bundling electrospinning. Carbohydrate Research, 2010, 345, 2374-2380.	1.1	55
20	Electrospun poly(L-lactide) membranes containing a single drug or multiple drug system for antimicrobial wound dressings. Macromolecular Research, 2011, 19, 1310-1319.	1.0	54
21	Study of charge storage in the nanofibrous poly(ethylene terephthalate) electrets prepared by electrospinning or by corona discharge method. European Polymer Journal, 2008, 44, 1962-1967.	2.6	47
22	Multifunctional Hybrid Materials From Poly(3â€Hydroxybutyrate), TiO ₂ Nanoparticles, and Chitosan Oligomers by Combining Electrospinning/Electrospraying and Impregnation. Macromolecular Bioscience, 2013, 13, 707-716.	2.1	47
23	From design of bio-based biocomposite electrospun scaffolds to osteogenic differentiation of human mesenchymal stromal cells. Journal of Materials Science: Materials in Medicine, 2014, 25, 1563-1575.	1.7	47
24	Bicomponent aligned nanofibers of N-carboxyethylchitosan and poly(vinyl alcohol). European Polymer Journal, 2007, 43, 2809-2818.	2.6	44
25	Synthesis of adaptative and amphiphilic polymer model conetworks by versatile combination of ATRP, ROP, and "Click chemistryâ€, Journal of Polymer Science Part A, 2008, 46, 4997-5013.	2.5	43
26	Synthesis of polymer-stabilized magnetic nanoparticles and fabrication of nanocomposite fibers thereof using electrospinning. European Polymer Journal, 2008, 44, 615-627.	2.6	43
27	Electrospun Hybrid Nanofibers Based on Chitosan or <i>N</i> â€Carboxyethylchitosan and Silver Nanoparticles. Macromolecular Bioscience, 2009, 9, 884-894.	2.1	43
28	Antibacterial electrospun poly(É›-caprolactone)/ascorbyl palmitate nanofibrous materials. International Journal of Pharmaceutics, 2011, 416, 346-355.	2.6	41
29	Quaternized chitosan/κ-carrageenan/caffeic acid–coated poly(3-hydroxybutyrate) fibrous materials: Preparation, antibacterial and antioxidant activity. International Journal of Pharmaceutics, 2016, 513, 528-537.	2.6	38
30	New Nanostructured Materials Based on Fullerene and Biodegradable Polyesters. Chemistry of Materials, 2006, 18, 4917-4923.	3.2	37
31	Curcumin-loaded poly(l-lactide- <i>co</i> -D,l-lactide) electrospun fibers: Preparation and antioxidant, anticoagulant, and antibacterial properties. Journal of Bioactive and Compatible Polymers, 2014, 29, 607-627.	0.8	37
32	Advanced centrifugal electrospinning setup. Materials Letters, 2014, 136, 150-152.	1.3	35
33	C60-containing nanostructured polymeric materials with potential biomedical applications. Polymer, 2007, 48, 1835-1843.	1.8	34
34	Chitosan/ferulic acid-coated poly(ε-caprolactone) electrospun materials with antioxidant, antibacterial and antitumor properties. International Journal of Biological Macromolecules, 2018, 107, 689-702.	3.6	34
35	Polyelectrolyte Complexes Based on (Quaternized) Poly[(2-dimethylamino)ethyl methacrylate]: Behavior in Contact with Blood. Macromolecular Bioscience, 2007, 7, 940-954.	2.1	33
36	Photocatalytic self-cleaning poly(l -lactide) materials based on a hybrid between nanosized zinc oxide and expanded graphite or fullerene. Materials Science and Engineering C, 2016, 60, 184-194.	3.8	33

#	Article	IF	CITATIONS
37	Polymer fibers with magnetic core decorated with titanium dioxide prospective for photocatalytic water treatment. Journal of Environmental Chemical Engineering, 2018, 6, 2075-2084.	3.3	33
38	Novel electrospun poly(ε-caprolactone)-based bicomponent nanofibers possessing surface enriched in tertiary amino groups. European Polymer Journal, 2008, 44, 566-578.	2.6	32
39	Electrospun Mats from Styrene/Maleic Anhydride Copolymers: Modification with Amines and Assessment of Antimicrobial Activity. Macromolecular Bioscience, 2010, 10, 944-954.	2.1	32
40	Comprehensive study on the formation of polyelectrolyte complexes from (quaternized) poly[2-(dimethylamino)ethyl methacrylate] and poly(2-acrylamido-2-methylpropane sodium sulfonate). Journal of Polymer Science Part A, 2006, 44, 5468-5479.	2.5	31
41	Novel Electrospun Nanofibers Composed of Polyelectrolyte Complexes. Macromolecular Rapid Communications, 2008, 29, 677-681.	2.0	31
42	Preparation of Well-Defined Poly[(ethylene oxide)-block-(sodium 2-acrylamido-2-methyl-1-propane) Tj ETQqO 0 0 Macromolecular Rapid Communications, 2006, 27, 1489-1494.	rgBT /Ove 2.0	rlock 10 Tf 50 30
43	Tuning of the Surface Biological Behavior of Poly(l-lactide)-Based Electrospun Materials by Polyelectrolyte Complex Formation. Biomacromolecules, 2010, 11, 521-532.	2.6	28
44	Antiproliferative activity of nanofibers containing quaternized chitosan and/or doxorubicin against MCF-7 human breast carcinoma cell line by apoptosis. Journal of Bioactive and Compatible Polymers, 2011, 26, 539-551.	0.8	28
45	Poly(3-hydroxybutyrate)-based hybrid materials with photocatalytic and magnetic properties prepared by electrospinning and electrospraying. Journal of Materials Science, 2014, 49, 2144-2153.	1.7	28
46	Novel Biodegradable Adaptive Hydrogels: Controlled Synthesis and Full Characterization of the Amphiphilic Coâ€Networks. Chemistry - A European Journal, 2008, 14, 6369-6378.	1.7	27
47	Nonspecific interactions in polymer-polymer reactions—1. Complex formation between polycarboxylic acids and 5-nitro-8-quinolinoxyl derivatives of polyethylene glycols. European Polymer Journal, 1991, 27, 189-192.	2.6	26
48	Electrospun Polyacrylonitrile Nanofibrous Membranes Tailored for Acetylcholinesterase Immobilization. Journal of Bioactive and Compatible Polymers, 2010, 25, 40-57.	0.8	26
49	Modification of electrospun poly(ε-caprolactone) mats by formation of a polyelectrolyte complex between poly(acrylic acid) and quaternized chitosan for tuning of their antibacterial properties. European Polymer Journal, 2014, 50, 18-29.	2.6	26
50	Electrospun polylactideâ€based materials for curcumin release: Photostability, antimicrobial activity, and anticoagulant effect. Journal of Applied Polymer Science, 2016, 133, .	1.3	26
51	Antioxidant and Antitumor Activities of Novel Quercetin-Loaded Electrospun Cellulose Acetate/Polyethylene Glycol Fibrous Materials. Antioxidants, 2020, 9, 232.	2.2	26
52	Nonâ€Woven Fibrous Materials with Antibacterial Properties Prepared by Tailored Attachment of Quaternized Chitosan to Electrospun Mats from Maleic Anhydride Copolymer. Macromolecular Bioscience, 2012, 12, 104-115.	2.1	25
53	Dual vs. single spinneret electrospinning for the preparation of dual drug containing non-woven fibrous materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 439, 176-183.	2.3	23
54	Antibacterial and antioxidant electrospun materials from poly(3-hydroxybutyrate) and polyvinylpyrrolidone containing caffeic acid phenethyl ester – "in―and "on―strategies for enhanced solubility. International Journal of Pharmaceutics, 2018, 545, 342-356.	2.6	23

#	Article	IF	CITATIONS
55	Novel polyelectrolyte complexes between N-carboxyethylchitosan and synthetic polyelectrolytes. European Polymer Journal, 2006, 42, 858-868.	2.6	22
56	Immobilization of acetylcholinesterase on new modified acrylonitrile copolymer membranes. Journal of Molecular Catalysis B: Enzymatic, 2008, 55, 169-176.	1.8	21
57	Quaternized chitosan-coated nanofibrous materials containing gossypol: Preparation by electrospinning, characterization and antiproliferative activity towards HeLa cells. International Journal of Pharmaceutics, 2012, 436, 10-24.	2.6	21
58	Nonspecific interactions in polymer-polymer reactions—3. Complex formation between polycarboxylic acids and 2-acetoxybenzoate derivatives of poly(ethylene glycol)s. European Polymer Journal, 1991, 27, 1045-1048.	2.6	20
59	Tuning the properties of PVDF or PVDF-HFP fibrous materials decorated with ZnO nanoparticles by applying electrospinning alone or in conjunction with electrospraying. Fibers and Polymers, 2017, 18, 649-657.	1.1	20
60	Separation of C60/C70 mixture on activated carbon and activated carbon fibres. Carbon, 1995, 33, 209-213.	5.4	18
61	Electrospun materials from polylactide and Schiff base derivative of Jeffamine ED® and 8-hydroxyquinoline-2-carboxaldehyde and its complex with Cu2+: Preparation, antioxidant and antitumor activities. Materials Science and Engineering C, 2020, 116, 111185.	3.8	17
62	Optimized waterâ€based ATRP of an anionic monomer: Comprehension and properties characterization. Journal of Polymer Science Part A, 2009, 47, 1108-1119.	2.5	16
63	Еlectrospun Ñellulose acetate membranes decorated with curcumin-PVP particles: preparation, antibacterial and antitumor activities. Journal of Materials Science: Materials in Medicine, 2018, 29, 9.	1.7	16
64	Electrospun 5-chloro-8-hydroxyquinoline-Loaded Cellulose Acetate/Polyethylene Glycol Antifungal Membranes Against Esca. Polymers, 2019, 11, 1617.	2.0	16
65	Modulating the Mechanical Properties of Electrospun PHB/PCL Materials by Using Different Types of Collectors and Heat Sealing. Polymers, 2020, 12, 693.	2.0	16
66	Nanoparticles based on complex of berberine chloride and polymethacrylic or polyacrylic acid with antioxidant and in vitro antitumor activities. International Journal of Pharmaceutics, 2020, 584, 119426.	2.6	15
67	Mechanism of the anionic polymerization of lactones, initiated by intercalation graphite compounds. Polymer Bulletin, 1981, 4, 97-103.	1.7	13
68	Electrospun non-woven mats from stereocomplex between high molar mass poly(l-lactide) and poly(d-lactide)-block-poly(butylene succinate) copoly(ester urethane)s. European Polymer Journal, 2012, 48, 1965-1975.	2.6	13
69	Electrospun Eco-Friendly Materials Based on Poly(3-hydroxybutyrate) (PHB) and TiO2 with Antifungal Activity Prospective for Esca Treatment. Polymers, 2020, 12, 1384.	2.0	13
70	Natural Polyampholyte-Based Coreâ^'Shell Nanoparticles with <i>N</i> -Carboxyethylchitosan-Containing Core and Poly(ethylene oxide) Shell. Biomacromolecules, 2009, 10, 838-844.	2.6	12
71	Curcumin-PVP Loaded Electrospun Membranes with Conferred Antibacterial and Antitumoral Activities. Fibers and Polymers, 2020, 21, 55-65.	1.1	12
72	Preparation, properties and complex formation ability of poly(ether-ester)s of poly(ethylene glycol)s and 2,6-pyridinedicarboxylic acid. Macromolecular Chemistry and Physics, 1995, 196, 2695-2708.	1.1	11

#	Article	IF	CITATIONS
73	Selfâ€assembly of <i>N</i> arboxyethylchitosan near the isoelectric point. Journal of Polymer Science Part A, 2008, 46, 6712-6721.	2.5	11
74	Polyelectrolyte complex nanoparticles from <i>N</i> arboxyethylchitosan and polycationic double hydrophilic diblock copolymers. Journal of Polymer Science Part A, 2009, 47, 2105-2117.	2.5	11
75	New polyelectrolyte complex of chitosan: Preparation, characterization, and application as a biocontrol agent carrier. Journal of Bioactive and Compatible Polymers, 2012, 27, 148-160.	0.8	11
76	Title is missing!. Die Makromolekulare Chemie, 1993, 194, 1065-1078.	1.1	10
77	N,N,N-trimethylchitosan iodide complexes with a weak or a strong polyacid and nanoparticles thereof. Colloid and Polymer Science, 2014, 292, 2899-2912.	1.0	10
78	Materials from Nanosized ZnO and Polyacrylonitrile: Properties Depending on the Design of Fibers (Electrospinning or Electrospinning/Electrospraying). Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 912-922.	1.9	10
79	Electrospun fibers from polylactide-based stereocomplex: why?. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 270-286.	1.8	9
80	Cellulose Acetate-Based Electrospun Materials with a Variety of Biological Potentials: Antibacterial, Antifungal and Anticancer. Polymers, 2021, 13, 1631.	2.0	9
81	Cationic polymerization initiated by intercalation compounds of Lewis acids. Polymer Bulletin, 1983, 10, 487-490.	1.7	8
82	Copolymers of 2-acryloylamido-2-methylpropanesulfonic acid and acrylic acid with anticoagulant activity. E-Polymers, 2003, 3, .	1.3	8
83	Stable Aqueous Dispersion of PEGylated Nanoparticles by Polyelectrolyte Complex Formation. Macromolecular Rapid Communications, 2007, 28, 1361-1365.	2.0	7
84	Quaternized chitosan-coated nanofibrous implants loaded with gossypol prepared by electrospinning and their efficacy against Graffi myeloid tumor. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 287-306.	1.9	7
85	8-Hydroxyquinoline-5-Sulfonic Acid-Containing Poly(Vinyl Alcohol)/Chitosan Electrospun Materials and Their Cu2+ and Fe3+ Complexes: Preparation, Antibacterial, Antifungal and Antitumor Activities. Polymers, 2021, 13, 2690.	2.0	7
86	Electrospun Poly(methyl methacrylate)/TiO2 Composites for Photocatalytic Water Treatment. Polymers, 2021, 13, 3923.	2.0	7
87	Electrospun 5-Chloro-7-iodo-8-hydroxyquinoline (Clioquinol)-Containing Poly(3-hydroxybutyrate)/Polyvinylpyrrolidone Antifungal Materials Prospective as Active Dressings against Esca. Polymers, 2022, 14, 367.	2.0	7
88	Water-soluble polymers bearing biologically active residues, 3. Hydrolysis of polyethers and poly(ether-ester)s bearing 1-naphthylacetyl groups. Macromolecular Chemistry and Physics, 1995, 196, 1663-1669.	1.1	6
89	Preparation, characterisation and properties of poly(ether-amide)s bearing hydroxyl side groups and of their derivatives with the synthetic auxin 1-naphthylacetic acid. Macromolecular Chemistry and Physics, 1998, 199, 87-96.	1.1	6
90	Electrospun PLLA/PEG scaffolds. Materials Today, 2019, 28, 114-115.	8.3	6

#	Article	IF	CITATIONS
91	Eco-Friendly Hybrid PLLA/Chitosan/Trichoderma asperellum Nanomaterials as Biocontrol Dressings against Esca Disease in Grapevines. Polymers, 2022, 14, 2356.	2.0	6
92	Title is missing!. Die Makromolekulare Chemie, 1993, 194, 3107-3122.	1.1	5
93	Effect of coating on the mechanical properties of electrospun poly(3-hydroxybutyrate) materials with targeted fibers alignment. Journal of Polymer Research, 2021, 28, 1.	1.2	5
94	Electrospun Polymer-Fungicide Nanocomposites for Grapevine Protection. Polymers, 2021, 13, 3673.	2.0	5
95	Facile preparation of novel antioxidant fibrous material based on natural plant extract from Portulaca oleracea and PLA by electrospinning for biomedical applications. Polymer International, 0, ,	1.6	5
96	Electrospun CuS/ZnS–PAN Hybrids as Efficient Visible-Light Photocatalysts. Catalysis Letters, 2018, 148, 2756-2764.	1.4	4
97	Coreâ€Sheathâ€Like Poly(Ethylene Oxide)/Beeswax Composite Fibers Prepared by Singleâ€Spinneret Electrospinning. Antibacterial, Antifungal, and Antitumor Activities. Macromolecular Bioscience, 2022, 22, e2200015.	2.1	4
98	Thermal imidization peculiarities of electrospun BPDA-PDA/ODA copolyamic acid nanofibers. Macromolecular Research, 2013, 21, 419-426.	1.0	3
99	New phytoactive polymers prepared by polycondensation. Macromolecular Symposia, 1997, 122, 281-286.	0.4	2

Novel polyelectrolyte complex between chitosan and poly(2-acryloylamido-2-methylpropanesulfonic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $\frac{100}{123}$

101	Oneâ€Step Preparation of Electrospun Microfibrous Polystyrene Mats Having Surface Enriched in <i>pâ€tert</i> â€Butylcalix[4]arene Fitted with Phosphinoyl Pendant Arms. Macromolecular Rapid Communications, 2008, 29, 1871-1876.	2.0	2
102	Composite multilayer thin films morphology and their interactions with proteins as a function of polyanion structure. Macromolecular Research, 2011, 19, 1062-1070.	1.0	1