
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4293847/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PET/CT imaging of head-and-neck and pancreatic cancer in humans by targeting the "Cancer Integrinâ€ıαvβ6 with Ga-68-Trivehexin. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 1136-1147.	6.4	25
2	Towards ²¹³ Bi alpha-therapeutics and beyond: unravelling the foundations of efficient Bi ^{III} complexation by DOTP. Inorganic Chemistry Frontiers, 2021, 8, 3893-3904.	6.0	11
3	PSMA-Targeted Therapeutics: A Tale About Law and Economics. Journal of Nuclear Medicine, 2021, 62, 1482-1482.	5.0	5
4	Gender-Specific Efficacy Revealed by Head-to-Head Comparison of Pasireotide and Octreotide in a Representative In Vivo Model of Nonfunctioning Pituitary Tumors. Cancers, 2021, 13, 3097.	3.7	8
5	PET/CT imaging of pancreatic carcinoma targeting the "cancer integrin―αvβ6. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 4107-4108.	6.4	8
6	NIR Fluorescence Imaging of Colon Cancer with cRGD-ZW800-1—Letter. Clinical Cancer Research, 2021, 27, 4937-4937.	7.0	2
7	There is a world beyond αvβ3-integrin: Multimeric ligands for imaging of the integrin subtypes αvβ6, αvβ8, αvβ and α5β1 by positron emission tomography. EJNMMI Research, 2021, 11, 106.	² 3, 2.5	14
8	PSMA PET Imaging in Glioblastoma: A Preclinical Evaluation and Theranostic Outlook. Frontiers in Oncology, 2021, 11, 774017.	2.8	10
9	lt's Time to Shift the Paradigm: Translation and Clinical Application of Non-αvβ3 Integrin Targeting Radiopharmaceuticals. Cancers, 2021, 13, 5958.	3.7	6
10	Clickâ€Chemistry (CuAAC) Trimerization of an α _v β ₆ Integrin Targeting Gaâ€68â€Peptide: Enhanced Contrast for inâ€Vivo PET Imaging of Human Lung Adenocarcinoma Xenografts. ChemBioChem, 2020, 21, 2836-2843.	2.6	20
11	Firstâ€Generation Bispidine Chelators for ²¹³ Bi ^{III} Radiopharmaceutical Applications. ChemMedChem, 2020, 15, 1591-1600.	3.2	19
12	Tracking a TGF-β activator in vivo: sensitive PET imaging of αvβ8-integrin with the Ga-68-labeled cyclic RGD octapeptide trimer Ga-68-Triveoctin. EJNMMI Research, 2020, 10, 133.	2.5	10
13	Al(iii)-NTA-fluoride: a simple model system for Al–F binding with interesting thermodynamics. Dalton Transactions, 2020, 49, 13726-13736.	3.3	0
14	PIDAZTA: Structurally Constrained Chelators for the Efficient Formation of Stable Galliumâ€68 Complexes at Physiological pH. Chemistry - A European Journal, 2019, 25, 10698-10709.	3.3	11
15	Selective Targeting of Integrin αvβ8 by a Highly Active Cyclic Peptide. Journal of Medicinal Chemistry, 2019, 62, 2024-2037.	6.4	33
16	Synthesis and Preclinical Characterization of the PSMA-Targeted Hybrid Tracer PSMA-I&F for Nuclear and Fluorescence Imaging of Prostate Cancer. Journal of Nuclear Medicine, 2019, 60, 71-78.	5.0	76
17	In vivo imaging of early stages of rheumatoid arthritis by α5β1-integrin-targeted positron emission tomography. EJNMMI Research, 2019, 9, 87.	2.5	17
18	<i>N</i> -Methylation of <i>iso</i> DGR Peptides: Discovery of a Selective α5β1-Integrin Ligand as a Potent Tumor Imaging Agent. Journal of Medicinal Chemistry, 2018, 61, 2490-2499.	6.4	18

#	Article	IF	CITATIONS
19	Therapeutic Radiopharmaceuticals Targeting Integrin Î $\pm v$ Î ² 6. ACS Omega, 2018, 3, 2428-2436.	3.5	23
20	From a Helix to a Small Cycle: Metadynamicsâ€Inspired αvβ6 Integrin Selective Ligands. Angewandte Chemie - International Edition, 2018, 57, 14645-14649.	13.8	26
21	Dualâ€Nuclide Radiopharmaceuticals for Positron Emission Tomography Based Dosimetry in Radiotherapy. Chemistry - A European Journal, 2018, 24, 547-550.	3.3	19
22	Reâ€thinking the role of radiometal isotopes: Towards a future concept for theranostic radiopharmaceuticals. Journal of Labelled Compounds and Radiopharmaceuticals, 2018, 61, 141-153.	1.0	70
23	Efficient formation of inert Bi-213 chelates by tetraphosphorus acid analogues of DOTA: towards improved alpha-therapeutics. EJNMMI Research, 2018, 8, 78.	2.5	24
24	Molar Activity of Ga-68 Labeled PSMA Inhibitor Conjugates Determines PET Imaging Results. Molecular Pharmaceutics, 2018, 15, 4296-4302.	4.6	35
25	Synthesis of Symmetrical Tetrameric Conjugates of the Radiolanthanide Chelator DOTPI for Application in Endoradiotherapy by Means of Click Chemistry. Frontiers in Chemistry, 2018, 6, 107.	3.6	8
26	Equilibrium Thermodynamics, Formation, and Dissociation Kinetics of Trivalent Iron and Gallium Complexes of Triazacyclononane-Triphosphinate (TRAP) Chelators: Unraveling the Foundations of Highly Selective Ga-68 Labeling. Frontiers in Chemistry, 2018, 6, 170.	3.6	9
27	Lanthanide(<scp>iii</scp>) complexes of monophosphinate/monophosphonate DOTA-analogues: effects of the substituents on the formation rate and radiolabelling yield. Dalton Transactions, 2018, 47, 13006-13015.	3.3	11
28	Von einer Helix zu einem kleinen Ring: Metadynamikâ€inspirierte, selektive Liganden fÃ1⁄4r αvβ6â€Integrin. Angewandte Chemie, 2018, 130, 14856-14860.	2.0	3
29	A Comprehensive Evaluation of the Activity and Selectivity Profile of Ligands for RGD-binding Integrins. Scientific Reports, 2017, 7, 39805.	3.3	425
30	Dendritic poly-chelator frameworks for multimeric bioconjugation. Chemical Communications, 2017, 53, 2586-2589.	4.1	18
31	Perspective of αvβ6-Integrin Imaging for Clinical Management of Pancreatic Carcinoma and Its Precursor Lesions. Molecular Imaging, 2017, 16, 153601211770938.	1.4	24
32	In Vivo PET Imaging of the Cancer Integrin αvβ6 Using ⁶⁸ Ga-Labeled Cyclic RGD Nonapeptides. Journal of Nuclear Medicine, 2017, 58, 671-677.	5.0	49
33	Dimer formation of GdDO3A-arylsulfonamide complexes causes loss of pH-dependency of relaxivity. Dalton Transactions, 2017, 46, 16828-16836.	3.3	13
34	Theranostic Value of Multimers: Lessons Learned from Trimerization of Neurotensin Receptor Ligands and Other Targeting Vectors. Pharmaceuticals, 2017, 10, 29.	3.8	16
35	Exploring the Role of RGD-Recognizing Integrins in Cancer. Cancers, 2017, 9, 116.	3.7	308
36	A Practical Guide on the Synthesis of Metal Chelates for Molecular Imaging and Therapy by Means of Click Chemistry. Chemistry - A European Journal, 2016, 22, 11500-11508.	3.3	38

#	Article	IF	CITATIONS
37	Variation of Specific Activities of ⁶⁸ Ga-Aquibeprin and ⁶⁸ Ga-Avebetrin Enables Selective PET Imaging of Different Expression Levels of Integrins î± ₅ î² ₁ and α _v î² ₃ . Journal of Nuclear Medicine, 2016, 57, 1618-1624.	5.0	27
38	Complementary, Selective PET Imaging of Integrin Subtypes α5β1 and αvβ3 Using 68Ga-Aquibeprin and 68Ga-Avebetrin. Journal of Nuclear Medicine, 2016, 57, 460-466.	5.0	35
39	In vivo biokinetic and metabolic characterization of the 68Ca-labelled α5β1-selective peptidomimetic FR366. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 953-963.	6.4	22
40	MAâ€NOTMP: A Triazacyclononane Trimethylphosphinate Based Bifunctional Chelator for Gallium Radiolabelling of Biomolecules. ChemMedChem, 2015, 10, 1475-1479.	3.2	10
41	The Influence of the Combination of Carboxylate and Phosphinate Pendant Arms in 1,4,7-Triazacyclononane-Based Chelators on Their 68Ga Labelling Properties. Molecules, 2015, 20, 13112-13126.	3.8	15
42	A shortcut to high-affinity Ga-68 and Cu-64 radiopharmaceuticals: one-pot click chemistry trimerisation on the TRAP platform. Dalton Transactions, 2015, 44, 11137-11146.	3.3	49
43	Phosphinic Acid Functionalized Polyazacycloalkane Chelators for Radiodiagnostics and Radiotherapeutics: Unique Characteristics and Applications. ChemMedChem, 2014, 9, 1107-1115.	3.2	57
44	Tailored Gallium(III) Chelator NOPO: Synthesis, Characterization, Bioconjugation, and Application in Preclinical Ga-68-PET Imaging. Molecular Pharmaceutics, 2014, 11, 3893-3903.	4.6	43
45	Benefits of NOPO As Chelator in Gallium-68 Peptides, Exemplified by Preclinical Characterization of 68Ga-NOPO–c(RGDfK). Molecular Pharmaceutics, 2014, 11, 1687-1695.	4.6	49
46	Comparison of cyclic RGD peptides for αvβ3 integrin detection in a rat model of myocardial infarction. EJNMMI Research, 2013, 3, 38.	2.5	51
47	How is ⁶⁸ Ga Labeling of Macrocyclic Chelators Influenced by Metal Ion Contaminants in ⁶⁸ Ge/ ⁶⁸ Ga Generator Eluates?. ChemMedChem, 2013, 8, 95-103.	3.2	63
48	A Cyclenâ€Based Tetraphosphinate Chelator for the Preparation of Radiolabeled Tetrameric Bioconjugates. Chemistry - A European Journal, 2013, 19, 7748-7757.	3.3	34
49	Be spoilt for choice with radiolabelled RGD peptides: Preclinical evaluation of 68Ga-TRAP(RGD)3. Nuclear Medicine and Biology, 2013, 40, 33-41.	0.6	84
50	Convenient Synthesis of ⁶⁸ Ga‣abeled Gadolinium(III) Complexes: Towards Bimodal Responsive Probes for Functional Imaging with PET/MRI. Chemistry - A European Journal, 2013, 19, 12602-12606.	3.3	23
51	Copper-64 labelling of triazacyclononane-triphosphinate chelators. Dalton Transactions, 2012, 41, 13803.	3.3	27
52	68Ga-NODAGA-RGD is a suitable substitute for 18F-Galacto-RGD and can be produced with high specific activity in a cGMP/GRP compliant automated process. Nuclear Medicine and Biology, 2012, 39, 777-784.	0.6	93
53	Complexation of Metal Ions with TRAP (1,4,7-Triazacyclononane Phosphinic Acid) Ligands and 1,4,7-Triazacyclononane-1,4,7-triacetic Acid: Phosphinate-Containing Ligands as Unique Chelators for Trivalent Gallium. Inorganic Chemistry, 2012, 51, 577-590.	4.0	96
54	Comparative gallium-68 labeling of TRAP-, NOTA-, and DOTA-peptides: practical consequences for the future of gallium-68-PET. EJNMMI Research, 2012, 2, 28.	2.5	100

#	Article	IF	CITATIONS
55	Bone-seeking TRAP conjugates: surprising observations and their implications on the development of gallium-68-labeled bisphosphonates. EJNMMI Research, 2012, 2, 13.	2.5	29
56	A Monoreactive Bifunctional Triazacyclononane Phosphinate Chelator with High Selectivity for Galliumâ€68. ChemMedChem, 2012, 7, 1375-1378.	3.2	40
57	TRAP, a Powerful and Versatile Framework for Galliumâ€68 Radiopharmaceuticals. Chemistry - A European Journal, 2011, 17, 14718-14722.	3.3	136
58	A Triazacyclononaneâ€Based Bifunctional Phosphinate Ligand for the Preparation of Multimeric ⁶⁸ Ga Tracers for Positron Emission Tomography. Chemistry - A European Journal, 2010, 16, 7174-7185.	3.3	138
59	Structural Study of Ga(III), In(III), and Fe(III) Complexes of Triaza-Macrocycle Based Ligands with N3S3 Donor Set. Inorganic Chemistry, 2009, 48, 3257-3267.	4.0	23
60	Zinc Thiolate Complexes [ZnLn(SR)]+ with Azamacrocyclic Ligands: Synthesis and Structural Properties. European Journal of Inorganic Chemistry, 2006, 2006, 1444-1455.	2.0	43