List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4293482/publications.pdf Version: 2024-02-01

HUA FANC

#	Article	IF	CITATIONS
1	Prevalence of Antibiotic Resistance Genes and Bacterial Pathogens in Long-Term Manured Greenhouse Soils As Revealed by Metagenomic Survey. Environmental Science & Technology, 2015, 49, 1095-1104.	10.0	282
2	Biochar: A review of its impact on pesticide behavior in soil environments and its potential applications. Journal of Environmental Sciences, 2016, 44, 269-279.	6.1	177
3	Characterization of a bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil. Journal of Hazardous Materials, 2010, 184, 281-289.	12.4	106
4	Degradation of chlorpyrifos in laboratory soil and its impact on soil microbial functional diversity. Journal of Environmental Sciences, 2009, 21, 380-386.	6.1	103
5	Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils. Journal of Hazardous Materials, 2018, 357, 53-62.	12.4	103
6	Exploring bacterial community structure and function associated with atrazine biodegradation in repeatedly treated soils. Journal of Hazardous Materials, 2015, 286, 457-465.	12.4	96
7	Metagenomic analysis reveals potential biodegradation pathways of persistent pesticides in freshwater and marine sediments. Science of the Total Environment, 2014, 470-471, 983-992.	8.0	92
8	An exploration of the relationship between adsorption and bioavailability of pesticides in soil to earthworm. Environmental Pollution, 2006, 141, 428-433.	7.5	80
9	Metagenomic analysis reveals the prevalence of biodegradation genes for organic pollutants in activated sludge. Bioresource Technology, 2013, 129, 209-218.	9.6	74
10	Effects of repeated applications of fungicide carbendazim on its persistence and microbial community in soil. Journal of Environmental Sciences, 2009, 21, 179-185.	6.1	68
11	Chemical factors affecting uptake and translocation of six pesticides in soil by maize (Zea mays L.). Journal of Hazardous Materials, 2021, 405, 124269.	12.4	65
12	Reduced mobility of fomesafen through enhanced adsorption in biocharâ€amended soil. Environmental Toxicology and Chemistry, 2015, 34, 1258-1266.	4.3	64
13	Isolation and characterization of Pseudomonas sp. CBW capable of degrading carbendazim. Biodegradation, 2010, 21, 939-946.	3.0	63
14	Changes in soil microbial community structure and function associated with degradation and resistance of carbendazim and chlortetracycline during repeated treatments. Science of the Total Environment, 2016, 572, 1203-1212.	8.0	63
15	Exploring bacterial communities and biodegradation genes in activated sludge from pesticide wastewater treatment plants via metagenomic analysis. Environmental Pollution, 2018, 243, 1206-1216.	7.5	63
16	Variations in dissipation rate, microbial function and antibiotic resistance due to repeated introductions of manure containing sulfadiazine and chlortetracycline to soil. Chemosphere, 2014, 96, 51-56.	8.2	59
17	Effects of aging process on adsorption–desorption and bioavailability of fomesafen in an agricultural soil amended with rice hull biochar. Journal of Environmental Sciences, 2017, 56, 180-191.	6.1	59
18	Biodegradation of DDT by Stenotrophomonas sp. DDT-1: Characterization and genome functional analysis. Scientific Reports, 2016, 6, 21332.	3.3	56

#	Article	IF	CITATIONS
19	Dissipation of fomesafen in biochar-amended soil and its availability to corn (Zea mays L.) and earthworm (Eisenia fetida). Journal of Soils and Sediments, 2016, 16, 2439-2448.	3.0	56
20	Tracking resistomes, virulence genes, and bacterial pathogens in long-term manure-amended greenhouse soils. Journal of Hazardous Materials, 2020, 396, 122618.	12.4	55
21	Exposure to fungicide difenoconazole reduces the soil bacterial community diversity and the co-occurrence network complexity. Journal of Hazardous Materials, 2021, 405, 124208.	12.4	53
22	Responses of Soil Microorganisms and Enzymes to Repeated Applications of Chlorothalonil. Journal of Agricultural and Food Chemistry, 2006, 54, 10070-10075.	5.2	52
23	Uptake, Translocation, and Subcellular Distribution of Azoxystrobin in Wheat Plant (<i>Triticum) Tj ETQq1 1 0.78</i>	4314 rgBT	lOverlock
24	Characterization and genome functional analysis of the DDT-degrading bacterium Ochrobactrum sp. DDT-2. Science of the Total Environment, 2017, 592, 593-599.	8.0	47
25	Fungicides enhanced the abundance of antibiotic resistance genes in greenhouse soil. Environmental Pollution, 2020, 259, 113877.	7.5	44
26	Dissipation of carbendazim and chloramphenicol alone and in combination and their effects on soil fungal:bacterial ratios and soil enzyme activities. Chemosphere, 2011, 84, 634-641.	8.2	43
27	Subcellular distribution governing accumulation and translocation of pesticides in wheat (Triticum) Tj ETQq1 10.	784314 rg 8.2	;BT1/Overloc
28	Effect of chlorpyrifos on soil microbial populations and enzyme activities. Journal of Environmental Sciences, 2006, 18, 4-5.	6.1	39
29	Carbendazim induces a temporary change in soil bacterial community structure. Journal of Environmental Sciences, 2009, 21, 1679-1683.	6.1	32
30	Upward translocation of acetochlor and atrazine in wheat plants depends on their distribution in roots. Science of the Total Environment, 2020, 703, 135636.	8.0	30
31	Characterization of a novel carbendazim-degrading strain Rhodococcus sp. CX-1 revealed by genome and transcriptome analyses. Science of the Total Environment, 2021, 754, 142137.	8.0	30
32	Enterobacteriaceae predominate in the endophytic microbiome and contribute to the resistome of strawberry. Science of the Total Environment, 2020, 727, 138708.	8.0	29
33	Biodegradation and detoxification of chlorimuron-ethyl by Enterobacter ludwigii sp. CE-1. Ecotoxicology and Environmental Safety, 2018, 150, 34-39.	6.0	28
34	Root Uptake of Imidacloprid and Propiconazole Is Affected by Root Composition and Soil Characteristics. Journal of Agricultural and Food Chemistry, 2020, 68, 15381-15389.	5.2	28
35	Nanoscale zerovalent iron-mediated degradation of DDT in soil. Environmental Science and Pollution Research, 2016, 23, 6253-6263.	5.3	27
36	Repeated treatments of ciprofloxacin and kresoxim-methyl alter their dissipation rates, biological function and increase antibiotic resistance in manured soil. Science of the Total Environment, 2018, 628-629, 661-671.	8.0	25

#	Article	IF	CITATIONS
37	Characterization, genome functional analysis, and detoxification of atrazine by Arthrobacter sp. C2. Chemosphere, 2021, 264, 128514.	8.2	25
38	Foam shares antibiotic resistomes and bacterial pathogens with activated sludge in wastewater treatment plants. Journal of Hazardous Materials, 2021, 408, 124855.	12.4	25
39	Prevalence of Azole-Resistant <i>Aspergillus fumigatus</i> is Highly Associated with Azole Fungicide Residues in the Fields. Environmental Science & Technology, 2021, 55, 3041-3049.	10.0	25
40	Persistence of the herbicide butachlor in soil after repeated applications and its effects on soil microbial functional diversity. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2009, 44, 123-129.	1.5	24
41	Development of antibiotic resistance genes in soils with ten successive treatments of chlortetracycline and ciprofloxacin. Environmental Pollution, 2019, 253, 152-160.	7.5	24
42	Microenvironmental Interplay Predominated by Beneficial <i>Aspergillus</i> Abates Fungal Pathogen Incidence in Paddy Environment. Environmental Science & Technology, 2019, 53, 13042-13052.	10.0	24
43	Tebuconazole induces triazole-resistance in Aspergillus fumigatus in liquid medium and soil. Science of the Total Environment, 2019, 648, 1237-1243.	8.0	24
44	Reduced bacterial network complexity in agricultural soils after application of the neonicotinoid insecticide thiamethoxam. Environmental Pollution, 2021, 274, 116540.	7.5	24
45	Deposition distribution, metabolism characteristics, and reduced application dose of difenoconazole in the open field and greenhouse pepper ecosystem. Agriculture, Ecosystems and Environment, 2021, 313, 107370.	5.3	21
46	Enantioselectivity of new chiral triazole fungicide mefentrifluconazole: Bioactivity against phytopathogen, and acute toxicity and bioaccumulation in earthworm (Eisenia fetida). Science of the Total Environment, 2022, 815, 152937.	8.0	21
47	Microbial degradation of fomesafen and detoxification of fomesafen-contaminated soil by the newly isolated strain Bacillus sp. FE-1 via a proposed biochemical degradation pathway. Science of the Total Environment, 2018, 616-617, 1612-1619.	8.0	20
48	Copper-based fungicide copper hydroxide accelerates the evolution of antibiotic resistance via gene mutations in Escherichia coli. Science of the Total Environment, 2022, 815, 152885.	8.0	20
49	Adsorption and Desorption of Carbendazim and Thiamethoxam in Five Different Agricultural Soils. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 550-554.	2.7	19
50	Effect of vegetation of transgenic Bt rice lines and their straw amendment on soil enzymes, respiration, functional diversity and community structure of soil microorganisms under field conditions. Journal of Environmental Sciences, 2012, 24, 1259-1270.	6.1	18
51	Exposure to graphene oxide at environmental concentrations induces thyroid endocrine disruption and lipid metabolic disturbance in Xenopus laevis. Chemosphere, 2019, 236, 124834.	8.2	18
52	Microbial response to repeated treatments of manure containing sulfadiazine and chlortetracycline in soil. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2014, 49, 609-615.	1.5	17
53	Bioaugmentation of DDT-contaminated soil by dissemination of the catabolic plasmid pDOD. Journal of Environmental Sciences, 2015, 27, 42-50.	6.1	17
54	Deposition, Distribution, Metabolism, and Reduced Application Dose of Thiamethoxam in a Pepper-Planted Ecosystem. Journal of Agricultural and Food Chemistry, 2019, 67, 11848-11859.	5.2	17

#	Article	IF	CITATIONS
55	Carbendazim shapes microbiome and enhances resistome in the earthworm gut. Microbiome, 2022, 10, 63.	11.1	17
56	Uptake, translocation, and metabolism of thiamethoxam in soil by leek plants. Environmental Research, 2022, 211, 113084.	7.5	16
57	Using Matrix Solid-Phase Microextraction (Matrix-SPME) to Estimate Bioavailability of DDTs in Soil to Both Earthworm and Vegetables. Archives of Environmental Contamination and Toxicology, 2010, 58, 62-70.	4.1	15
58	Combined remediation of DDT congeners and cadmium in soil by Sphingobacterium sp. D-6 and Sedum alfredii Hance. Journal of Environmental Sciences, 2012, 24, 1036-1046.	6.1	15
59	Five-Year Survey (2014 to 2018) of Azole Resistance in Environmental <i>Aspergillus fumigatus</i> Isolates from China. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	15
60	Deposition, dissipation, metabolism and dietary risk assessment of chlorothalonil in open field-planted cabbage. Journal of Food Composition and Analysis, 2021, 102, 104008.	3.9	15
61	Exploring microbial community structure and biological function in manured soil during ten repeated treatments with chlortetracycline and ciprofloxacin. Chemosphere, 2019, 228, 469-477.	8.2	14
62	Persistence of repeated triadimefon application and its impact on soil microbial functional diversity. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2012, 47, 104-110.	1.5	13
63	Characterization and genome functional analysis of a novel metamitron-degrading strain Rhodococcus sp. MET via both triazinone and phenyl rings cleavage. Scientific Reports, 2016, 6, 32339.	3.3	13
64	Coexposure to environmental concentrations of cis-bifenthrin and graphene oxide: Adverse effects on the nervous system during metamorphic development of Xenopus laevis. Journal of Hazardous Materials, 2020, 381, 120995.	12.4	13
65	Mutation in cyp51A and high expression of efflux pump gene of Aspergillus fumigatus induced by propiconazole in liquid medium and soil. Environmental Pollution, 2020, 256, 113385.	7.5	11
66	Triazole resistance in Aspergillus fumigatus in crop plant soil after tebuconazole applications. Environmental Pollution, 2020, 266, 115124.	7.5	11
67	Increased triazole-resistance and cyp51A mutations in Aspergillus fumigatus after selection with a combination of the triazole fungicides difenoconazole and propiconazole. Journal of Hazardous Materials, 2020, 400, 123200.	12.4	9
68	Biodegradability and ecological safety assessment of Stenotrophomonas sp. DDT-1 in the DDT-contaminated soil. Ecotoxicology and Environmental Safety, 2018, 158, 145-153.	6.0	8
69	Competitive Adsorption and Mobility of Propiconazole and Difenoconazole on Five Different Soils. Bulletin of Environmental Contamination and Toxicology, 2020, 105, 927-933.	2.7	7
70	Deposition, dissipation, and minimum effective dosage of the fungicide carbendazim in the pepperâ€field ecosystem. Pest Management Science, 2020, 76, 907-916.	3.4	6
71	Adsorption, mobility and degradation of diphenamid in chinese soils. KSCE Journal of Civil Engineering, 2012, 16, 547-553.	1.9	5
72	Analysis method development and health risk assessment of pesticide and heavy metal residues in <i>Dendrobium Candidum</i> . RSC Advances, 2022, 12, 6869-6875.	3.6	5

#	Article	IF	CITATIONS
73	Determination and Dietary Intake Risk Assessment of Pesticide Residues in Fritillariae Thunbergii Bulbs and Cultivated Soils. Journal of AOAC INTERNATIONAL, 2021, 104, 404-412.	1.5	3
74	Uptake, Accumulation, and translocation of azoxystrobin by Vegetable plants in soils: influence of soil characteristics and plant species. Bulletin of Environmental Contamination and Toxicology, 2022, 109, 386-392.	2.7	2
75	Acquired triazole-resistance of Aspergillus fumigatus in soil and earthworm guts exposed to propiconazole and difenoconazole at field-realistic concentrations. Science of the Total Environment, 2021, 786, 147577.	8.0	1
76	Herbicidal activity of atrazine to barnyard grass depends upon soil characteristics. Pest Management Science, 2022, 78, 3287-3293.	3.4	1