List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/429331/publications.pdf Version: 2024-02-01

CRECORI LIMOUE

#	Article	IF	CITATIONS
1	A DFT Study of the Full Catalytic Cycle of the Suzukiâ^'Miyaura Cross-Coupling on a Model System. Organometallics, 2006, 25, 3647-3658.	1.1	348
2	Computational Characterization of the Role of the Base in the Suzukiâ^'Miyaura Cross-Coupling Reaction. Journal of the American Chemical Society, 2005, 127, 9298-9307.	6.6	317
3	Computational Perspective on Pd-Catalyzed C–C Cross-Coupling Reaction Mechanisms. Accounts of Chemical Research, 2013, 46, 2626-2634.	7.6	306
4	Gold-Catalyzed [4C+2C] Cycloadditions of Allenedienes, including an Enantioselective Version with New Phosphoramidite-Based Catalysts: Mechanistic Aspects of the Divergence between [4C+3C] and [4C+2C] Pathways. Journal of the American Chemical Society, 2009, 131, 13020-13030.	6.6	258
5	The Reaction Mechanism of the Hydroamination of Alkenes Catalyzed by Gold(I)â^'Phosphine:  The Role of the Counterion and the N-Nucleophile Substituents in the Proton-Transfer Step. Journal of the American Chemical Society, 2008, 130, 853-864.	6.6	197
6	Câ^'C Reductive Elimination in Palladium Complexes, and the Role of Coupling Additives. A DFT Study Supported by Experiment. Journal of the American Chemical Society, 2009, 131, 3650-3657.	6.6	178
7	Single-Site Homogeneous and Heterogeneized Gold(III) Hydrogenation Catalysts:Â Mechanistic Implications. Journal of the American Chemical Society, 2006, 128, 4756-4765.	6.6	161
8	Gold(I)-Catalyzed Intermolecular Oxyarylation of Alkynes: Unexpected Regiochemistry in the Alkylation of Arenes. Organic Letters, 2009, 11, 4906-4909.	2.4	148
9	Computational study of the transmetalation process in the Suzuki–Miyaura cross-coupling of aryls. Journal of Organometallic Chemistry, 2006, 691, 4459-4466.	0.8	140
10	Goldâ€Catalyzed [4C+3C] Intramolecular Cycloaddition of Allenedienes: Synthetic Potential and Mechanistic Implications. Chemistry - A European Journal, 2009, 15, 3336-3339.	1.7	138
11	Hydrogen Transfer to Ketones Catalyzed by Shvo's Ruthenium Hydride Complex:  A Mechanistic Insight. Organometallics, 2007, 26, 4135-4144.	1.1	130
12	Acid Activation in Phenyliodine Dicarboxylates: Direct Observation, Structures, and Implications. Journal of the American Chemical Society, 2016, 138, 12747-12750.	6.6	127
13	To Bend or Not To Bend:Â Dilemma of the Edge-Sharing Binuclear Square Planar Complexes of d8Transition Metal Ions. Inorganic Chemistry, 1998, 37, 804-813.	1.9	126
14	Theory Does Not Support an Osmaoxetane Intermediate in the Osmium-Catalyzed Dihydroxylation of Olefins. Journal of the American Chemical Society, 1996, 118, 11660-11661.	6.6	121
15	Computational Evidence of the Importance of Substituent Bulk on Agostic Interactions in Ir(H)2(PtBu2Ph)2+. Journal of the American Chemical Society, 1998, 120, 361-365.	6.6	121
16	Self-Assembly of Mercaptaneâ~'Metallacarborane Complexes by an Unconventional Cooperative Effect:Â A Câ~'H···Sâ~'H··Ĥâ~'B Hydrogen/Dihydrogen Bond Interaction. Journal of the American Chemical Society, 2005, 127, 15976-15982.	6.6	105
17	Mechanistic Exploration of the Pd-Catalyzed Copper-Free Sonogashira Reaction. ACS Catalysis, 2012, 2, 135-144.	5.5	103
18	Calculation of Reaction Free Energies in Solution: A Comparison of Current Approaches. Journal of Physical Chemistry A, 2018, 122, 1392-1399.	1.1	101

#	Article	IF	CITATIONS
19	A Critical Analysis of the Cyclic and Open Alternatives of the Transmetalation Step in the Stille Cross-Coupling Reaction. Journal of the American Chemical Society, 2006, 128, 14571-14578.	6.6	100
20	Câ^'H Oxidative Addition of Bisimidazolium Salts to Iridium and Rhodium Complexes, and N-Heterocyclic Carbene Generation. A Combined Experimental and Theoretical Study. Organometallics, 2006, 25, 1120-1134.	1.1	96
21	Theoretical Study on the Origin of Enantioselectivity in the Bis(dihydroquinidine)-3,6-pyridazine·Osmium Tetroxide-Catalyzed Dihydroxylation of Styrene. Journal of the American Chemical Society, 1999, 121, 1317-1323.	6.6	94
22	Palladium Round Trip in the Negishi Coupling of <i>trans</i> â€{PdMeCl(PMePh ₂) ₂] with ZnMeCl: An Experimental and DFT Study of the Transmetalation Step. Chemistry - A European Journal, 2010, 16, 8596-8599.	1.7	76
23	Computational Rationalization of the Dependence of the Enantioselectivity on the Nature of the Catalyst in the Vanadium-Catalyzed Oxidation of Sulfides by Hydrogen Peroxide. Journal of the American Chemical Society, 2005, 127, 3624-3634.	6.6	73
24	Cationic Intermediates in the Pd-Catalyzed Negishi Coupling. Kinetic and Density Functional Theory Study of Alternative Transmetalation Pathways in the Me–Me Coupling of ZnMe ₂ and <i>trans</i> -[PdMeCl(PMePh ₂) ₂]. Journal of the American Chemical Society, 2011, 133, 13519-13526.	6.6	69
25	Highly Efficient Redox Isomerisation of Allylic Alcohols Catalysed by Pyrazoleâ€Based Ruthenium(IV) Complexes in Water: Mechanisms of Bifunctional Catalysis in Water. Chemistry - A European Journal, 2012, 18, 7749-7765.	1.7	68
26	The Transmetalation Process in Suzuki–Miyaura Reactions: Calculations Indicate Lower Barrier via Boronate Intermediate. ChemCatChem, 2014, 6, 3132-3138.	1.8	68
27	Reaction Mechanism of the Gold(I)-Catalyzed Addition of Phenols to Olefins: A Concerted Process Accelerated by Phenol and Water. Organometallics, 2010, 29, 3252-3260.	1.1	67
28	The importance of conformational search: a test case on the catalytic cycle of the Suzuki–Miyaura cross-coupling. Theoretical Chemistry Accounts, 2011, 128, 639-646.	0.5	67
29	Hydroamination of Alkynes with Ammonia: Unforeseen Role of the Gold(I) Catalyst. Angewandte Chemie - International Edition, 2011, 50, 11147-11151.	7.2	67
30	Edge-Sharing Binuclear d8 Complexes with XR Bridges: Theoretical and Structural Database Study of their Molecular Conformation. Chemistry - A European Journal, 1999, 5, 1391-1410.	1.7	65
31	Challenges in modelling homogeneous catalysis: new answers from ab initio molecular dynamics to the controversy over the Wacker process. Chemical Society Reviews, 2014, 43, 4940-4952.	18.7	65
32	First-Principles Molecular Dynamics Studies of Organometallic Complexes and Homogeneous Catalytic Processes. Accounts of Chemical Research, 2016, 49, 1271-1278.	7.6	64
33	Mechanism of Formation of Silver <i>N</i> -Heterocyclic Carbenes Using Silver Oxide:  A Theoretical Study. Organometallics, 2007, 26, 6170-6183.	1.1	58
34	Mechanistic Intricacies of Goldâ€Catalyzed Intermolecular Cycloadditions between Allenamides and Dienes. Chemistry - A European Journal, 2013, 19, 15248-15260.	1.7	57
35	The Wacker Process: Inner―or Outer‧phere Nucleophilic Addition? New Insights from Ab Initio Molecular Dynamics. Chemistry - A European Journal, 2010, 16, 8738-8747.	1.7	55
36	Why Is the Suzukiâ^'Miyaura Cross-Coupling of sp ³ Carbons in α-Bromo Sulfoxide Systems Fast and Stereoselective? A DFT Study on the Mechanism. Journal of Organic Chemistry, 2009, 74, 4049-4054.	1.7	54

#	Article	IF	CITATIONS
37	A Versatile Ru Catalyst for the Asymmetric Transfer Hydrogenation of Both Aromatic and Aliphatic Sulfinylimines. Chemistry - A European Journal, 2012, 18, 1969-1983.	1.7	53
38	Unraveling the Pathway of Gold(I)-Catalyzed Olefin Hydrogenation: An Ionic Mechanism. Journal of the American Chemical Society, 2013, 135, 1295-1305.	6.6	53
39	Ortho-CH Activation of Aromatic Ketones, Partially Fluorinated Aromatic Ketones, and Aromatic Imines by a Trihydride-Stannyl-Osmium(IV) Complex. Organometallics, 2003, 22, 3753-3765.	1.1	52
40	The Active Role of the Water Solvent in the Regioselective CO Hydrogenation of Unsaturated Aldehydes by [RuH2(mtppms)x] in Basic Media. Organometallics, 2006, 25, 5010-5023.	1.1	52
41	The Origin of endo Stereoselectivity in the Hetero-Diels–Alder Reactions of Aldehydes with ortho-Xylylenes: CH–π, π–π, and Steric Effects on Stereoselectivity. Chemistry - A European Journal, 2002, 8, 3423.	1.7	50
42	When Are Tricoordinated Pd ^{II} Species Accessible? Stability Trends and Mechanistic Consequences. Chemistry - A European Journal, 2008, 14, 8986-8994.	1.7	50
43	Proton-Transfer and H2-Elimination Reactions of Main-Group Hydrides EH4-(E = B, Al, Ga) with Alcohols. Inorganic Chemistry, 2006, 45, 3086-3096.	1.9	49
44	Hydroamination of C–C Multiple Bonds with Hydrazine Catalyzed by N-Heterocyclic Carbene–Gold(I) Complexes: Substrate and Ligand Effects. ACS Catalysis, 2015, 5, 815-829.	5.5	49
45	Direct Asymmetric Hydrogenation of <i>N</i> -Methyl and <i>N</i> -Alkyl Imines with an Ir(III)H Catalyst. Journal of the American Chemical Society, 2018, 140, 16967-16970.	6.6	47
46	Chemical and Constitutional Influences in the Self-Assembly of Functional Supramolecular Hydrogen-Bonded Nanoscopic Fibres. Chemistry - A European Journal, 2006, 12, 9161-9175.	1.7	46
47	Mechanistic Comparison of Acid- and Gold(I)-Catalyzed Nucleophilic Addition Reactions to Olefins. Organometallics, 2010, 29, 5919-5926.	1.1	46
48	Mechanistic Studies on the Pd-Catalyzed Vinylation of Aryl Halides with Vinylalkoxysilanes in Water: The Effect of the Solvent and NaOH Promoter. Journal of the American Chemical Society, 2013, 135, 13749-13763.	6.6	46
49	Origin of the Anti-Markovnikov Hydroamination of Alkenes Catalyzed by L–Au(I) Complexes: Coordination Mode Determines Regioselectivity. ACS Catalysis, 2019, 9, 848-858.	5.5	45
50	A Measureable Equilibrium between Iridium Hydride Alkylidene and Iridium Hydride Alkene Isomers. Angewandte Chemie - International Edition, 2004, 43, 3708-3711.	7.2	44
51	Theoretical Analysis of the Hydrogen-Transfer Reaction to Câ•N, Câ•C, and C≡C Bonds Catalyzed by Shvo's Ruthenium Complex. Organometallics, 2008, 27, 4854-4863.	1.1	44
52	Gold <i>versus</i> Silverâ€Catalyzed Intermolecular Hydroaminations of Alkenes and Dienes. Advanced Synthesis and Catalysis, 2011, 353, 3451-3466.	2.1	44
53	Experimental and Theoretical Approaches to the Influence of the Addition of Pyrene to a Series of Pd and Ni NHCâ€Based Complexes: Catalytic Consequences. Chemistry - A European Journal, 2015, 21, 1578-1588.	1.7	44
54	Formation of a Vinyliminium Palladium Complex by Câ^C Coupling in Vinylcarbene Palladium Aryl Complexes. Organometallics, 2006, 25, 1293-1297.	1.1	42

#	Article	IF	CITATIONS
55	Applications of Hybrid DFT/Molecular Mechanics to Homogeneous Catalysis. Structure and Bonding, 2004, , 117-150.	1.0	41
56	Mechanistic evaluation of metal-catalyzed hydrogen-transfer processes: The Shvo catalyst as an example of computational unravelling. Computational and Theoretical Chemistry, 2009, 903, 123-132.	1.5	41
57	Microsolvation and Encapsulation Effects on Supramolecular Catalysis: C–C Reductive Elimination inside [Ga ₄ L ₆] ^{12–} Metallocage. Journal of the American Chemical Society, 2019, 141, 13114-13123.	6.6	40
58	Mechanism of the Base-Assisted Displacement of Chloride by Alcohol in Sulfinyl Derivatives. Journal of Organic Chemistry, 2006, 71, 6388-6396.	1.7	39
59	Nature of Cp*MoO2+in Water and Intramolecular Proton-Transfer Mechanism by Stopped-Flow Kinetics and Density Functional Theory Calculations. Inorganic Chemistry, 2007, 46, 4103-4113.	1.9	39
60	Internal Alkyne Isomerization to Vinylidene versus Stable π-Alkyne: Theoretical and Experimental Study on the Divergence of Analogous Cp*Ru and TpRu Systems. Organometallics, 2011, 30, 4014-4031.	1.1	36
61	Counteranion and Solvent Assistance in Ruthenium-Mediated Alkyne to Vinylidene Isomerizations. Inorganic Chemistry, 2013, 52, 8919-8932.	1.9	36
62	Different van der Waals radii for organic and inorganic halogen atoms: a significant improvement in IMOMM performance. Theoretical Chemistry Accounts, 1997, 96, 146-150.	0.5	34
63	New chiral tetraaza ligands for the efficient enantioselective addition of dialkylzinc to aromatic aldehydes. Tetrahedron, 2008, 64, 9717-9724.	1.0	34
64	Inner- and Outer-Sphere Hydrogenation Mechanisms: A Computational Perspective. Advances in Inorganic Chemistry, 2010, 62, 231-260.	0.4	34
65	Palladium monophosphine Pd(PPh ₃): is it really accessible in solution?. Chemical Communications, 2014, 50, 661-663.	2.2	34
66	Gold-Catalyzed Cycloadditions Involving Allenes: Mechanistic Insights from Theoretical Studies. Topics in Current Chemistry, 2011, 302, 225-248.	4.0	33
67	The Nature of [PdCl ₂ (C ₂ H ₄)(H ₂ O)] as an Active Species in the Wacker Process: New Insights from Ab Initio Molecular Dynamics Simulations. Chemistry - A European Journal, 2012, 18, 5612-5619.	1.7	31
68	The first stable copper(II) complex containing four sulfide ligands: synthesis and structural characterization of [Pt2(dppe)2(μ-S)2] and [Cu{Pt2(dppe)2(μ3-S)2}2]2+. Chemical Communications, 1998, , 597-598.	2.2	30
69	Mechanistic analogies and differences between gold- and palladium-supported Schiff base complexes as hydrogenation catalysts: A combined kinetic and DFT study. Journal of Catalysis, 2008, 254, 226-237.	3.1	29
70	Ketone Hydrogenation with Iridium Complexes with "non N–H―Ligands: The Key Role of the Strong Base. ACS Catalysis, 2015, 5, 4368-4376.	5.5	29
71	Proton-Transfer Reactions to Half-Sandwich Ruthenium Trihydride Complexes Bearing Hemilabile P,N Ligands: Experimental and Density Functional Theory Studiesâ€Dedicated to Prof. Serafin Bernal in recognition of his contribution to inorganic chemistry, on the occasion of his retirement Inorganic Chemistry, 2010, 49, 6035-6057.	1.9	28
72	The Origin of Antiâ€Markovnikov Regioselectivity in Alkene Hydroamination Reactions Catalyzed by [Rh(DPEphos)] ⁺ . Chemistry - A European Journal, 2016, 22, 9311-9320.	1.7	28

#	Article	IF	CITATIONS
73	Theoretical Characterization of an Intermediate for the [3 + 2] Cycloaddition Mechanism in the Bis(dihydroxy- quinidine)â^'3,6-Pyridazine·Osmium Tetroxide-Catalyzed Dihydroxylation of Styrene. Journal of Organic Chemistry, 1997, 62, 7892-7894.	1.7	27
74	Theoretical Investigation of the Selective CC Hydrogenation of Unsaturated Aldehydes Catalyzed by [{RuCl2(mtppms)2}2] in Acidic Media. Organometallics, 2006, 25, 862-872.	1.1	27
75	Some critical issues in the application of quantum mechanics/molecular mechanics methods to the study of transition metal complexes. Faraday Discussions, 2003, 124, 429-441.	1.6	26
76	Csp3–F bond activation by nucleophilic attack of the {Pt2S2} core assisted by non-covalent interactions. Chemical Communications, 2008, , 3130.	2.2	26
77	Experimental and Computational Studies on the Iridium Activation of Aliphatic and Aromatic CH Bonds of Alkyl Aryl Ethers and Related Molecules. Chemistry - A European Journal, 2009, 15, 9034-9045.	1.7	26
78	Ptll as a proton shuttle during C–H bond activation in the Shilov process. Chemical Communications, 2012, 48, 1979.	2.2	26
79	Synthetic, Mechanistic, and Theoretical Studies on the Generation of Iridium Hydride Alkylidene and Iridium Hydride Alkene Isomers. Chemistry - A European Journal, 2009, 15, 9046-9057.	1.7	25
80	Solution dynamics of agostic interactions in T-shaped Pt(ii) complexes from ab initio molecular dynamics simulations. Dalton Transactions, 2013, 42, 12165.	1.6	25
81	Iridium-Catalyzed Isomerization of <i>N</i> -Sulfonyl Aziridines to Allyl Amines. Organic Letters, 2018, 20, 5747-5751.	2.4	25
82	Theoretical and Synthetic Studies on Dihaptoacyl and β-Agostic Acyl Complexes of Molybdenum. Organometallics, 1999, 18, 3294-3305.	1.1	24
83	A QM/MM Study of the Asymmetric Dihydroxylation of Terminal Aliphaticn-Alkenes with OsO4â‹(DHQD)2PYDZ: Enantioselectivity as a Function of Chain Length. Chemistry - A European Journal, 2005, 11, 1017-1029.	1.7	24
84	Aromatic C–F activation by complexes containing the {Pt2S2} core via nucleophilic substitution: a combined experimental and theoretical study. Dalton Transactions, 2009, , 5980.	1.6	24
85	Beyond Continuum Solvent Models in Computational Homogeneous Catalysis. Topics in Catalysis, 2022, 65, 118-140.	1.3	24
86	Tripodal halogen bonding iodo-azolium receptors for anion recognition. RSC Advances, 2017, 7, 11253-11258.	1.7	23
87	Breaking an electronically preferred symmetry by steric effects in a series of [Ir(biph)X(QR3)2] compounds (X=Cl or I, Q=P or As). New Journal of Chemistry, 1998, 22, 1493-1498.	1.4	22
88	Catalysis on the coastline: Theozyme, molecular dynamics, and free energy perturbation analysis of antibody 21D8 catalysis of the decarboxylation of 5-nitro-3-carboxybenzisoxazole. Journal of Computational Chemistry, 2003, 24, 98-110.	1.5	22
89	Do Metalâ‹â‹Water Hydrogen Bonds Hold in Solution? Insight from Ab Initio Molecular Dynamics Simulations. ChemPhysChem, 2011, 12, 1666-1668.	1.0	22
90	Theoretical, structural and NMR studies of fluxionality in thiolato-bridged platinum(II)-platinum(IV) dinuclear complexes. Inorganica Chimica Acta, 1997, 265, 89-102.	1.2	20

#	Article	IF	CITATIONS
91	Theoretical study on intramolecular allene-diene cycloadditions catalyzed by PtCl2 and Au(i) complexes. Dalton Transactions, 2011, 40, 11095.	1.6	19
92	A Tetraferrocenylâ€Resorcinarene Cavitand as a Redoxâ€Switchable Host of Ammonium Salts. Chemistry - A European Journal, 2015, 21, 10558-10565.	1.7	19
93	Palladium(II) complexes with Pd2S2 rings. Synthesis and theoretical characterization of [Pd2(dppe)2(μ-S)2] and X-ray characterization of [Pd3(dppe)3(μ3-S)2]Cl2. Inorganic Chemistry Communication, 1998, 1, 466-468.	1.8	18
94	How does the Achiral Base Decide the Stereochemical Outcome in the Dynamic Kinetic Resolution of Sulfinyl Chlorides? A Computational Study. Advanced Synthesis and Catalysis, 2007, 349, 2103-2110.	2.1	18
95	Reaction Rate Inside the Cavity of [Ga ₄ L ₆] ^{12â^'} Supramolecular Metallocage is Regulated by the Encapsulated Solvent. Chemistry - A European Journal, 2020, 26, 6988-6992.	1.7	18
96	Mechanism of the Rhodiumâ€Catalyzed Asymmetric Isomerization of Allylamines to Enamines. Chemistry - A European Journal, 2008, 14, 3323-3329.	1.7	17
97	Electrostatic Interactions between Substituents as Regioselectivity Control Elements in Dielsâ^'Alder Cycloadditions. A DFT Study of Cycloadditions of 1-Methoxy-4-trimethylsiloxy Dienes with Acrylonitrile. Journal of Organic Chemistry, 2002, 67, 7179-7184.	1.7	16
98	Unusual Câ^'H Allylic Activation in the {PtII(cod)} Fragment Bonded to a {Pt2(μ-S)2} Core. Organometallics, 2004, 23, 2522-2532.	1.1	16
99	Well-Defined β-Diketiminatocobalt(II) Complexes for Alkene Cyclohydroamination of Primary Amines. ACS Catalysis, 2018, 8, 4446-4451.	5.5	16
100	Catalytic Regioselective Isomerization of 2,2â€Disubstituted Oxetanes to Homoallylic Alcohols. Angewandte Chemie - International Edition, 2020, 59, 7521-7527.	7.2	16
101	What Makes a Good (Computed) Energy Profile?. Topics in Organometallic Chemistry, 2020, , 1-38.	0.7	15
102	The Role of Water in the Stereoselective Hydrogenation of 1,2-Diphenylacetylene Catalyzed by the Water-Soluble [{RuCl2(mtppms)2}2]. European Journal of Inorganic Chemistry, 2007, 2007, 2879-2889.	1.0	14
103	Comparative Mechanistic Study on the [Au(NHC)] ⁺ -Catalyzed Hydration of Alkynes, Alkenes, and Allenes. Organometallics, 2020, 39, 3469-3479.	1.1	14
104	Aliphatic C–X (X=halogen) bond activation by transition metal complexes containing the {Pt2S2} core: A theoretical study of the reaction mechanism. Inorganica Chimica Acta, 2006, 359, 3736-3744.	1.2	12
105	Theoretical Evaluation of Phosphine Effects in Cross-Coupling Reactions. Catalysis By Metal Complexes, 2011, , 57-84.	0.6	12
106	Mild Iridium atalysed Isomerization of Epoxides. Computational Insights and Application to the Synthesis of βâ€Alkyl Amines. Advanced Synthesis and Catalysis, 2019, 361, 3624-3631.	2.1	12
107	A theoretical evaluation of steric and electronic effects on the structure of [OsO. Theoretica Chimica Acta, 1996, 94, 67.	0.9	11
108	The role of amide ligands in the stabilization of Pd(II) tricoordinated complexes: is the Pd–NR2 bond order single or higher?. Theoretical Chemistry Accounts, 2009, 123, 75-84.	0.5	10

#	Article	IF	CITATIONS
109	Mechanistic Insights on the Hydration of Terminal and Internal Allenes Catalyzed by [(NHC)Au] ⁺ . Organometallics, 2018, 37, 3543-3551.	1.1	10
110	Computational Analysis on the Pd-Catalyzed C–N Coupling of Ammonia with Aryl Bromides Using a Chelate Phosphine Ligand. Journal of Organic Chemistry, 2021, 86, 4007-4017.	1.7	10
111	Modeling Kinetics and Thermodynamics of Guest Encapsulation into the [M4L6]12– Supramolecular Organometallic Cage. Journal of Chemical Information and Modeling, 2021, 61, 4370-4381.	2.5	10
112	A comparative study of DFT and traditional ab initio methodologies on the OsO4 molecule. International Journal of Quantum Chemistry, 2000, 77, 544-551.	1.0	9
113	Origin of the Rate Acceleration in the Câ^'C Reductive Elimination from Pt(IV) omplex in a [Ga ₄ L ₆] ^{12â^'} Supramolecular Metallocage. Chemistry - A European Journal, 2021, 27, 15973-15980.	1.7	9
114	Diradical versus Concerted Mechanisms for the Dihydroxylation of Protoanemonin by OsO4 and OsO4â^'NH3 â^' The Effect of the Base in the Reaction. European Journal of Organic Chemistry, 2003, 2003, 833-839.	1.2	8
115	Rearrangement of Tridentate [OSO]-Type Ligands and Migratory Insertion Reaction Mechanisms in Cyclopentadienyl Tantalum Complexes. Organometallics, 2012, 31, 7052-7062.	1.1	8
116	Experimental and Theoretical Studies of the Hydrogenation of α,β-Unsaturated Acids by an 18 <i>e</i> Hydride Carbonylniobocene Complex. Organometallics, 2012, 31, 5177-5184.	1.1	8
117	Counteranion-Dependent Reaction Pathways in the Protonation of Cationic Ruthenium–Vinylidene Complexes. Organometallics, 2014, 33, 2549-2560.	1.1	8
118	Rim, Side Arms, and Cavity: Three Sites for the Recognition of Anions by Tetraazolium Resorcinarene Cavitands. Chemistry - A European Journal, 2016, 22, 15800-15806.	1.7	8
119	Realistic Simulation of Organometallic Reactivity in Solution by Means of First-Principles Molecular Dynamics. Structure and Bonding, 2015, , 81-106.	1.0	7
120	Mechanistic implications of the enantioselective addition of alkylzinc reagents to aldehydes catalyzed by nickel complexes with α-amino amide ligands. Organic and Biomolecular Chemistry, 2016, 14, 11125-11136.	1.5	7
121	A Reversible Phase Transition of 2D Coordination Layers by B–Hâ^™â^™â^™Cu(II) Interactions in a Coordination Polymer. Molecules, 2019, 24, 3204.	1.7	7
122	GARLEEK: Adding an extra flavor to ONIOM. Journal of Computational Chemistry, 2019, 40, 381-386.	1.5	6
123	QM/QM study of the coverage effects on the adsorption of amino-cyclopentene at the Si(100) surface. Journal of Computational Chemistry, 2006, 27, 1892-1897.	1.5	4
124	Mechanism of Palladium-Catalyzed Cross-Coupling Reactions. , 0, , 109-130.		4
125	Basis set influence on the ab initio description of the dihydrogen complex [Os(PH3)2Cl(CO)H(H2)]1. Computational and Theoretical Chemistry, 1996, 371, 59-68.	1.5	3
126	Effect of thetert-butiloxycarbonyl protecting group on the adsorption of protected amino-cyclopentene on the Si(100) surface. Physical Review B, 2007, 75, .	1.1	2

#	Article	IF	CITATIONS
127	A resorcinarene-based tetrabenzoimidazolylidene complex of rhodium. Dalton Transactions, 2020, 49, 3181-3186.	1.6	2

A theoretical evaluation of steric and electronic effects on the structure of [OSO4 (NR3)] (NR3 =) Tj ETQq0 0 0 rgBT 0.9 Verlock 10 Tf 50

129	A computational study on the acceleration of the Prins reaction by indium trichloride. Comptes Rendus Chimie, 2004, 7, 885-893.	0.2	1
130	Homogeneous Computational Catalysis: The Mechanism for Cross-Coupling and Other C-C Bond Formation Processes. NATO Science for Peace and Security Series B: Physics and Biophysics, 2012, , 185-206.	0.2	1
131	Catalytic Regioselective Isomerization of 2,2â€Disubstituted Oxetanes to Homoallylic Alcohols. Angewandte Chemie, 2020, 132, 7591-7597.	1.6	1
132	Skeletal diversity in Pt- and Au-catalyzed annulations of allenedienes: dissecting unconventional mechanistic pathways. Chemical Science, 2020, 11, 4209-4220.	3.7	1
133	Edge-Sharing Binuclear d8 Complexes with XR Bridges: Theoretical and Structural Database Study of their Molecular Conformation. , 1999, 5, 1391.		1