List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4293277/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Closed Fluxtubes and Dispersive Proton Conics at Jupiter's Polar Cap. Geophysical Research Letters, 2022, 49, .	4.0	7
2	Waterâ€Group Pickup Ions From Europaâ€Genic Neutrals Orbiting Jupiter. Geophysical Research Letters, 2022, 49, .	4.0	16
3	Loss of Energetic Ions Comprising the Ring Current Populations of Jupiter's Middle and Inner Magnetosphere. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	4
4	Evidence of Alfvénic Activity in Jupiter's Midâ€Toâ€High Latitude Magnetosphere. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	3
5	Investigating the Occurrence of Magnetic Reconnection at Jupiter's Dawn Magnetopause During the Juno Era. Geophysical Research Letters, 2022, 49, .	4.0	7
6	Magnetic Waves Excited by Newborn Pickup H ⁺ Near Jupiter: Neutral Hydrogen Loss by the Planetary System. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	1
7	Plasma Observations During the 7 June 2021 Ganymede Flyby From the Jovian Auroral Distributions Experiment (JADE) on Juno. Geophysical Research Letters, 2022, 49, .	4.0	16
8	Proton Outflow Associated With Jupiter's Auroral Processes. Geophysical Research Letters, 2021, 48, .	4.0	13
9	Centrifugal Equator in Jupiter's Plasma Sheet. Journal of Geophysical Research: Space Physics, 2021, 126, .	2.4	17
10	Simultaneous Observation of an Auroral Dawn Storm With the Hubble Space Telescope and Juno. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028717.	2.4	6
11	Survey of Juno Observations in Jupiter's Plasma Disk: Density. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029446.	2.4	15
12	The High‣atitude Extension of Jupiter's Io Torus: Electron Densities Measured by Juno Waves. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029195.	2.4	12
13	Electron Partial Density and Temperature Over Jupiter's Main Auroral Emission Using Juno Observations. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029426.	2.4	11
14	Simultaneous UV Images and High‣atitude Particle and Field Measurements During an Auroral Dawn Storm at Jupiter. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029679.	2.4	3
15	Method to Derive Ion Properties From Juno JADE Including Abundance Estimates for O ⁺ and S ²⁺ . Journal of Geophysical Research: Space Physics, 2020, 125, e2018JA026169.	2.4	31
16	Proton Acceleration by Io's Alfvénic Interaction. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027314.	2.4	18
17	A New Framework to Explain Changes in Io's Footprint Tail Electron Fluxes. Geophysical Research Letters, 2020, 47, e2020GL089267.	4.0	25
18	Heavy Ion Charge States in Jupiter's Polar Magnetosphere Inferred From Auroral Megavolt Electric Potentials. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028052.	2.4	21

#	Article	IF	CITATIONS
19	Energetic Electron Scattering due to Whistler Mode Chorus Waves Using Realistic Magnetic Field and Density Models in Jupiter's Magnetosphere. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027968.	2.4	9
20	Polar Flattening of Jupiter's Magnetosphere. Geophysical Research Letters, 2020, 47, e2020GL089818.	4.0	4
21	An Enhancement of Jupiter's Main Auroral Emission and Magnetospheric Currents. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027904.	2.4	13
22	First Report of Electron Measurements During a Europa Footprint Tail Crossing by Juno. Geophysical Research Letters, 2020, 47, e2020GL089732.	4.0	17
23	Juno Energetic Neutral Atom (ENA) Remote Measurements of Magnetospheric Injection Dynamics in Jupiter's Io Torus Regions. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027964.	2.4	11
24	Energetic Particles and Acceleration Regions Over Jupiter's Polar Cap and Main Aurora: A Broad Overview. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027699.	2.4	47
25	Energy Flux and Characteristic Energy of Electrons Over Jupiter's Main Auroral Emission. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027693.	2.4	37
26	Alfvénic Acceleration Sustains Ganymede's Footprint Tail Aurora. Geophysical Research Letters, 2020, 47, e2019GL086527.	4.0	25
27	Spatially Asymmetric Increase in Hot Electron Fraction in the Io Plasma Torus During Volcanically Active Period Revealed by Observations by Hisaki/EXCEED From November 2014 to May 2015. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027100.	2.4	9
28	Survey of Ion Properties in Jupiter's Plasma Sheet: Juno JADEâ€I Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027696.	2.4	36
29	Combining UV Spectra and Physical Chemistry to Constrain the Hot Electron Fraction in the Io Plasma Torus. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027458.	2.4	5
30	The Space Environment of Io and Europa. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027485.	2.4	66
31	Juno In Situ Observations Above the Jovian Equatorial Ionosphere. Geophysical Research Letters, 2020, 47, e2020GL087623.	4.0	5
32	Energetic Proton Acceleration Associated With Io's Footprint Tail. Geophysical Research Letters, 2020, 47, e2020GL090839.	4.0	16
33	Energetic Neutral Atoms From Jupiter's Polar Regions. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028697.	2.4	2
34	Influence of Solar Disturbances on Galactic Cosmic Rays in the Solar Wind, Heliosheath, and Local Interstellar Medium: Advanced Composition Explorer, New Horizons, and Voyager Observations. Astrophysical Journal, 2020, 905, 69.	4.5	15
35	A Persistent Depletion of Plasma Ions Within Jupiter's Auroral Polar Caps. Geophysical Research Letters, 2020, 47, .	4.0	1
36	Alfvénic Fluctuations Associated With Jupiter's Auroral Emissions. Geophysical Research Letters, 2019, 46, 7157-7165.	4.0	42

#	Article	IF	CITATIONS
37	Jovian High‣atitude Ionospheric Ions: Juno In Situ Observations. Geophysical Research Letters, 2019, 46, 8663-8670.	4.0	16
38	Suprathermal lons in the Outer Heliosphere. Astrophysical Journal, 2019, 876, 46.	4.5	15
39	Investigation of Massâ€∤Chargeâ€Dependent Escape of Energetic Ions Across the Magnetopauses of Earth and Jupiter. Journal of Geophysical Research: Space Physics, 2019, 124, 5539-5567.	2.4	15
40	Junoâ€UVS Observation of the Io Footprint During Solar Eclipse. Journal of Geophysical Research: Space Physics, 2019, 124, 5184-5199.	2.4	19
41	Energetic Oxygen and Sulfur Charge States in the Outer Jovian Magnetosphere: Insights From the Cassini Jupiter Flyby. Geophysical Research Letters, 2019, 46, 11709-11717.	4.0	12
42	On the Relation Between Jovian Aurorae and the Loading/Unloading of the Magnetic Flux: Simultaneous Measurements From Juno, Hubble Space Telescope, and Hisaki. Geophysical Research Letters, 2019, 46, 11632-11641.	4.0	32
43	Alfvén Wave Propagation in the Io Plasma Torus. Geophysical Research Letters, 2019, 46, 1242-1249.	4.0	24
44	Initial results from the New Horizons exploration of 2014 MU ₆₉ , a small Kuiper Belt object. Science, 2019, 364, .	12.6	113
45	Constraining the IMF at Pluto Using New Horizons SWAP Data and Hybrid Simulations. Journal of Geophysical Research: Space Physics, 2019, 124, 1568-1581.	2.4	2
46	Azimuthal Variation in the Io Plasma Torus Observed by the Hisaki Satellite From 2013 to 2016. Journal of Geophysical Research: Space Physics, 2019, 124, 3236-3254.	2.4	13
47	lo's Effect on Energetic Charged Particles as Seen in Juno Data. Geophysical Research Letters, 2019, 46, 13615-13620.	4.0	12
48	Pluto's Interaction With Energetic Heliospheric Ions. Journal of Geophysical Research: Space Physics, 2019, 124, 7413-7424.	2.4	4
49	Slowing of the Solar Wind in the Outer Heliosphere. Astrophysical Journal, 2019, 885, 156.	4.5	47
50	Survey of Jupiter's Dawn Magnetosheath Using Juno. Journal of Geophysical Research: Space Physics, 2019, 124, 9106-9123.	2.4	16
51	Transient Change of Io's Neutral Oxygen Cloud and Plasma Torus Observed by Hisaki. Journal of Geophysical Research: Space Physics, 2019, 124, 10318-10331.	2.4	10
52	Comparing Electron Energetics and UV Brightness in Jupiter's Northern Polar Region During Juno Perijove 5. Geophysical Research Letters, 2019, 46, 19-27.	4.0	18
53	Solar Wind Properties During Juno's Approach to Jupiter: Data Analysis and Resulting Plasma Properties Utilizing a 1â€D Forward Model. Journal of Geophysical Research: Space Physics, 2018, 123, 2772-2786.	2.4	15
54	Intervals of Intense Energetic Electron Beams Over Jupiter's Poles. Journal of Geophysical Research: Space Physics, 2018, 123, 1989-1999.	2.4	35

#	Article	IF	CITATIONS
55	Diverse Electron and Ion Acceleration Characteristics Observed Over Jupiter's Main Aurora. Geophysical Research Letters, 2018, 45, 1277-1285.	4.0	49
56	Precipitating Electron Energy Flux and Characteristic Energies in Jupiter's Main Auroral Region as Measured by Juno/JEDI. Journal of Geophysical Research: Space Physics, 2018, 123, 7554-7567.	2.4	42
57	Determining the Alpha to Proton Density Ratio for the New Horizons Solar Wind Observations. Astrophysical Journal, 2018, 866, 85.	4.5	10
58	In Situ Observations Connected to the Io Footprint Tail Aurora. Journal of Geophysical Research E: Planets, 2018, 123, 3061-3077.	3.6	48
59	Juno Constraints on the Formation of Jupiter's Magnetospheric Cushion Region. Geophysical Research Letters, 2018, 45, 9427-9434.	4.0	6
60	Spatial Distribution of Io's Neutral Oxygen Cloud Observed by Hisaki. Journal of Geophysical Research: Space Physics, 2018, 123, 3764-3776.	2.4	18
61	Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. Science, 2018, 361, 774-777.	12.6	53
62	Observation of Electron Conics by Juno: Implications for Radio Generation and Acceleration Processes. Geophysical Research Letters, 2018, 45, 9408-9416.	4.0	19
63	The Lymanâ€Î± Sky Background as Observed by New Horizons. Geophysical Research Letters, 2018, 45, 8022-8028.	4.0	19
64	Jovian deep magnetotail composition and structure. Journal of Geophysical Research: Space Physics, 2017, 122, 1763-1777.	2.4	13
65	Io plasma torus ion composition: Voyager, Galileo, and Cassini. Journal of Geophysical Research: Space Physics, 2017, 122, 727-744.	2.4	22
66	Juno's first glimpse of Jupiter's complexity. Geophysical Research Letters, 2017, 44, 7663-7667.	4.0	22
67	Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science, 2017, 356, 826-832.	12.6	109
68	Infrared observations of Jovian aurora from Juno's first orbits: Main oval and satellite footprints. Geophysical Research Letters, 2017, 44, 5308-5316.	4.0	30
69	Plasma measurements in the Jovian polar region with Juno/JADE. Geophysical Research Letters, 2017, 44, 7122-7130.	4.0	35
70	Plasma environment at the dawn flank of Jupiter's magnetosphere: Juno arrives at Jupiter. Geophysical Research Letters, 2017, 44, 4432-4438.	4.0	24
71	Hot flow anomaly observed at Jupiter's bow shock. Geophysical Research Letters, 2017, 44, 8107-8112.	4.0	17
72	Generation of the Jovian hectometric radiation: First lessons from Juno. Geophysical Research Letters, 2017, 44, 4439-4446.	4.0	38

#	Article	IF	CITATIONS
73	Juno observations of energetic charged particles over Jupiter's polar regions: Analysis of monodirectional and bidirectional electron beams. Geophysical Research Letters, 2017, 44, 4410-4418.	4.0	90
74	Observation and interpretation of energetic ion conics in Jupiter's polar magnetosphere. Geophysical Research Letters, 2017, 44, 4419-4425.	4.0	21
75	Radiation near Jupiter detected by Juno/JEDI during PJ1 and PJ3. Geophysical Research Letters, 2017, 44, 4426-4431.	4.0	10
76	Preliminary JIRAM results from Juno polar observations: 2. Analysis of the Jupiter southern H ₃ ⁺ emissions and comparison with the north aurora. Geophysical Research Letters, 2017, 44, 4633-4640.	4.0	20
77	Preliminary JIRAM results from Juno polar observations: 1. Methodology and analysis applied to the Jovian northern polar region. Geophysical Research Letters, 2017, 44, 4625-4632.	4.0	18
78	Characterization of the white ovals on Jupiter's southern hemisphere using the first data by the Juno/JIRAM instrument. Geophysical Research Letters, 2017, 44, 4660-4668.	4.0	15
79	Electron butterfly distributions at particular magnetic latitudes observed during Juno's perijove pass. Geophysical Research Letters, 2017, 44, 4489-4496.	4.0	6
80	Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 2017, 44, 7643-7652.	4.0	68
81	Electron beams and loss cones in the auroral regions of Jupiter. Geophysical Research Letters, 2017, 44, 7131-7139.	4.0	61
82	Junoâ€UVS approach observations of Jupiter's auroras. Geophysical Research Letters, 2017, 44, 7668-7675.	4.0	25
83	Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions. Geophysical Research Letters, 2017, 44, 4641-4648.	4.0	13
84	Survey of Voyager plasma science ions at Jupiter: 1. Analysis method. Journal of Geophysical Research: Space Physics, 2017, 122, 8241-8256.	2.4	28
85	Accelerated flows at Jupiter's magnetopause: Evidence for magnetic reconnection along the dawn flank. Geophysical Research Letters, 2017, 44, 4401-4409.	4.0	36
86	A new view of Jupiter's auroral radio spectrum. Geophysical Research Letters, 2017, 44, 7114-7121.	4.0	35
87	Spatial Distribution and Properties of 0.1–100ÂkeV Electrons in Jupiter's Polar Auroral Region. Geophysical Research Letters, 2017, 44, 9199-9207.	4.0	34
88	Energetic particle signatures of magnetic fieldâ€aligned potentials over Jupiter's polar regions. Geophysical Research Letters, 2017, 44, 8703-8711.	4.0	41
89	Discrete and broadband electron acceleration in Jupiter's powerful aurora. Nature, 2017, 549, 66-69	27.8	79
90	Local time asymmetry of Saturn's magnetosheath flows. Geophysical Research Letters, 2017, 44, 5877-5883.	4.0	23

#	Article	IF	CITATIONS
91	The Juno Mission. Space Science Reviews, 2017, 213, 5-37.	8.1	222
92	Survey of Voyager plasma science ions at Jupiter: 3. Protons and minor ions. Journal of Geophysical Research: Space Physics, 2017, 122, 8277-8294.	2.4	28
93	The puzzling detection of x-rays from Pluto by Chandra. Icarus, 2017, 287, 103-109.	2.5	19
94	Survey of thermal plasma ions in Saturn's magnetosphere utilizing a forward model. Journal of Geophysical Research: Space Physics, 2017, 122, 7256-7278.	2.4	48
95	Juno observations of largeâ€scale compressions of Jupiter's dawnside magnetopause. Geophysical Research Letters, 2017, 44, 7559-7568.	4.0	20
96	Radial variation of sulfur and oxygen ions in the Io plasma torus as deduced from remote observations by Hisaki. Journal of Geophysical Research: Space Physics, 2017, 122, 2999-3012.	2.4	23
97	Survey of Voyager plasma science ions at Jupiter: 2. Heavy ions. Journal of Geophysical Research: Space Physics, 2017, 122, 8257-8276.	2.4	44
98	Magnetospheric Science Objectives of the Juno Mission. Space Science Reviews, 2017, 213, 219-287.	8.1	163
99	The Jovian Auroral Distributions Experiment (JADE) on the Juno Mission to Jupiter. Space Science Reviews, 2017, 213, 547-643.	8.1	187
100	The Juno Mission. , 2017, , 5-37.		4
101	INTERPLANETARY MAGNETIC FIELD SECTOR FROM SOLAR WIND AROUND PLUTO (SWAP) MEASUREMENTS OF HEAVY ION PICKUP NEAR PLUTO. Astrophysical Journal Letters, 2016, 823, L30.	8.3	13
102	Atmospheric escape from unmagnetized bodies. Journal of Geophysical Research E: Planets, 2016, 121, 2364-2385.	3.6	44
103	Survey of Galileo plasma observations in Jupiter's plasma sheet. Journal of Geophysical Research E: Planets, 2016, 121, 871-894.	3.6	81
104	The formation of Charon's red poles from seasonally cold-trapped volatiles. Nature, 2016, 539, 65-68.	27.8	44
105	Pluto's interaction with the solar wind. Journal of Geophysical Research: Space Physics, 2016, 121, 4232-4246.	2.4	32
106	Europa's atmospheric neutral escape: Importance of symmetrical O2 charge exchange. Icarus, 2016, 264, 387-397.	2.5	29
107	The atmosphere of Pluto as observed by New Horizons. Science, 2016, 351, aad8866.	12.6	201
108	Pluto's interaction with its space environment: Solar wind, energetic particles, and dust. Science, 2016, 351, aad9045.	12.6	60

#	Article	IF	CITATIONS
109	Solar Wind and Internally Driven Dynamics: Influences on Magnetodiscs and Auroral Responses. Space Sciences Series of ISSI, 2016, , 51-97.	0.0	2
110	Jupiter's Magnetosphere: Plasma Sources and Transport. Space Sciences Series of ISSI, 2016, , 209-236.	0.0	0
111	The relative proportions of water group ions in Saturn's inner magnetosphere: A preliminary study. Journal of Geophysical Research: Space Physics, 2015, 120, 6624-6632.	2.4	7
112	Magnetic flux circulation in the rotationally driven giant magnetospheres. Journal of Geophysical Research: Space Physics, 2015, 120, 4229-4245.	2.4	67
113	Plasma properties in the deep jovian magnetotail. Planetary and Space Science, 2015, 119, 222-232.	1.7	27
114	Solar Wind and Internally Driven Dynamics: Influences on Magnetodiscs and Auroral Responses. Space Science Reviews, 2015, 187, 51-97.	8.1	36
115	Jupiter's deep magnetotail boundary layer. Planetary and Space Science, 2015, 111, 116-125.	1.7	22
116	Jupiter's Magnetosphere: Plasma Sources and Transport. Space Science Reviews, 2015, 192, 209-236.	8.1	19
117	Plasma conditions at Europa's orbit. Icarus, 2015, 261, 1-13.	2.5	62
118	Modeling Jovian hectometric attenuation lanes during the Cassini flyby of Jupiter. Journal of Geophysical Research: Space Physics, 2015, 120, 1888-1907.	2.4	9
119	Solar wind at 33 AU: Setting bounds on the Pluto interaction for New Horizons. Journal of Geophysical Research E: Planets, 2015, 120, 1497-1511.	3.6	19
120	The Pluto system: Initial results from its exploration by New Horizons. Science, 2015, 350, aad1815.	12.6	407
121	A survey of solar wind conditions at 5 AU: a tool for interpreting solar wind-magnetosphere interactions at Jupiter. Frontiers in Astronomy and Space Sciences, 2014, 1, .	2.8	27
122	Large-Scale Structure and Dynamics of the Magnetotails of Mercury, Earth, Jupiter and Saturn. Space Science Reviews, 2014, 182, 85-154.	8.1	41
123	Properties of plasma ions in the distant Jovian magnetosheath using Solar Wind Around Pluto data on New Horizons. Journal of Geophysical Research: Space Physics, 2014, 119, 3463-3479.	2.4	41
124	Plasma and energetic particle observations in Jupiter's deep tail near the magnetopause. Journal of Geophysical Research: Space Physics, 2014, 119, 6432-6444.	2.4	4
125	Bimodal size of Jupiter's magnetosphere. Journal of Geophysical Research: Space Physics, 2014, 119, 1523-1529.	2.4	17

126 Magnetospheric Science Objectives of the Juno Mission. , 2014, , 39-107.

#	Article	IF	CITATIONS
127	Planetary Magnetospheres. , 2013, , 251-307.		23
128	Science Potential from a Europa Lander. Astrobiology, 2013, 13, 740-773.	3.0	98
129	Magnetic signatures of Kelvinâ€Helmholtz vortices on Saturn's magnetopause: Global survey. Journal of Geophysical Research: Space Physics, 2013, 118, 393-404.	2.4	81
130	Evidence from radial velocity measurements of a global electric field in Saturn's inner magnetosphere. Journal of Geophysical Research: Space Physics, 2013, 118, 2122-2132.	2.4	51
131	Longitudinal modulation of the brightness of Io's auroral footprint emission: Comparison with models. Journal of Geophysical Research: Space Physics, 2013, 118, 3336-3345.	2.4	9
132	Magnetotail structure of the giant magnetospheres: Implications of the viscous interaction with the solar wind. Journal of Geophysical Research: Space Physics, 2013, 118, 7045-7053.	2.4	43
133	Conditions at the magnetopause of Saturn and implications for the solar wind interaction. Journal of Geophysical Research: Space Physics, 2013, 118, 3087-3095.	2.4	67
134	The multiple spots of the Ganymede auroral footprint. Geophysical Research Letters, 2013, 40, 4977-4981.	4.0	31
135	A 1â€Ð model of physical chemistry in Saturn's inner magnetosphere. Journal of Geophysical Research E: Planets, 2013, 118, 1567-1581.	3.6	21
136	Auroral Signatures of Solar Wind Interaction at Jupiter. Geophysical Monograph Series, 2013, , 411-420.	0.1	5
137	The Jovian Auroral Distributions Experiment (JADE) on the Juno Mission to Jupiter. , 2013, , 529-625.		0
138	Conditions at the expanded Jovian magnetopause and implications for the solar wind interaction. Journal of Geophysical Research, 2012, 117, .	3.3	51
139	Kelvinâ€Helmholtz instability at Saturn's magnetopause: Cassini ion data analysis. Journal of Geophysical Research, 2012, 117, .	3.3	38
140	Magnetosphereâ€ionosphere coupling at Jupiter: A parameter space study. Journal of Geophysical Research, 2012, 117, .	3.3	29
141	The roles of charge exchange and dissociation in spreading Saturn's neutral clouds. Journal of Geophysical Research, 2012, 117, .	3.3	42
142	Asymmetry of Io's outer atmosphere: Constraints from five Galileo flybys. Journal of Geophysical Research, 2012, 117, .	3.3	29
143	Flow of mass and energy in the magnetospheres of Jupiter and Saturn. Journal of Geophysical Research, 2011, 116, .	3.3	258
144	Longitudinal modulation of hot electrons in the Io plasma torus. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	27

#	Article	IF	CITATIONS
145	Modeling the Enceladus plume–plasma interaction. Geophysical Research Letters, 2010, 37, .	4.0	27
146	A sensitivity study of the Enceladus torus. Journal of Geophysical Research, 2010, 115, .	3.3	39
147	Solar wind interaction with Jupiter's magnetosphere. Journal of Geophysical Research, 2010, 115, .	3.3	128
148	Magnetosphereâ€ionosphere coupling at Jupiter: Effect of fieldâ€aligned potentials on angular momentum transport. Journal of Geophysical Research, 2010, 115, .	3.3	55
149	Location, structure, and motion of Jupiter's dusk magnetospheric boundary from â^¼1625 to 2550 <i>R</i> _J . Journal of Geophysical Research, 2010, 115, .	3.3	18
150	Generation of parallel electric fields in the Jupiter–Io torus wake region. Journal of Geophysical Research, 2009, 114, .	3.3	33
151	Currentâ€voltage relation of a centrifugally confined plasma. Journal of Geophysical Research, 2009, 114, .	3.3	43
152	The Solar Wind Around Pluto (SWAP) Instrument Aboard New Horizons. Space Science Reviews, 2008, 140, 261-313.	8.1	102
153	The Student Dust Counter on the New Horizons Mission. Space Science Reviews, 2008, 140, 387-402.	8.1	62
154	New Horizons: Anticipated Scientific Investigations atÂtheÂPluto System. Space Science Reviews, 2008, 140, 93-127.	8.1	74
155	Cassini UVIS observations of the lo plasma torus. Icarus, 2008, 194, 153-165.	2.5	56
156	Longitudinal plasma density variations at Saturn caused by hot electrons. Geophysical Research Letters, 2008, 35, .	4.0	16
157	A multispecies chemistry model of Io's local interaction with the Plasma Torus. Journal of Geophysical Research, 2008, 113, .	3.3	47
158	Reply to comment by S. W. H. Cowley et al. on "Jupiter: A fundamentally different magnetospheric interaction with the solar wind― Geophysical Research Letters, 2008, 35, .	4.0	62
159	The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) on the New Horizons Mission. Space Science Reviews, 2008, 140, 315-385.	8.1	53
160	PLANETARY SCIENCE: A New Spin on Saturn's Rotation. Science, 2007, 316, 380-381.	12.6	3
161	Energetic Particles in the Jovian Magnetotail. Science, 2007, 318, 220-222.	12.6	50
162	Diverse Plasma Populations and Structures in Jupiter's Magnetotail. Science, 2007, 318, 217-220.	12.6	80

#	Article	IF	CITATIONS
163	Io's Atmospheric Response to Eclipse: UV Aurorae Observations. Science, 2007, 318, 237-240.	12.6	41
164	Saturn's neutral torus versus Jupiter's plasma torus. Geophysical Research Letters, 2007, 34, .	4.0	40
165	Jupiter: A fundamentally different magnetospheric interaction with the solar wind. Geophysical Research Letters, 2007, 34, .	4.0	86
166	The magnetosphere of Jupiter: Coupling the equator to the poles. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69, 387-402.	1.6	68
167	Io's neutral clouds, plasma torus, magnetospheric interaction. , 2007, , 265-286.		14
168	Io-Jupiter interaction: Alfvén wave propagation and ionospheric Alfvén resonator. Journal of Geophysical Research, 2006, 111, .	3.3	40
169	Sbursts and the Jupiter ionospheric Alfv $ ilde{A}$ ©n resonator. Journal of Geophysical Research, 2006, 111, .	3.3	40
170	Cassini UVIS observations of the Io plasma torusIII. Observations of temporal and azimuthal variability. Icarus, 2006, 180, 124-140.	2.5	59
171	Radial variations in the Io plasma torus during the Cassini era. Journal of Geophysical Research, 2005, 110, .	3.3	75
172	Solar wind interactions with Comet 19P/Borrelly. Icarus, 2004, 167, 80-88.	2.5	41
173	Cassini UVIS observations of the Io plasma torus.II. Radial variations. Icarus, 2004, 172, 91-103.	2.5	80
174	Pluto's kinetic interaction with the solar wind. Geophysical Research Letters, 2004, 31, .	4.0	29
175	Modeling temporal variability of plasma conditions in the Io torus during the Cassini era. Journal of Geophysical Research, 2004, 109, .	3.3	53
176	Io-related Jovian auroral arcs: Modeling parallel electric fields. Journal of Geophysical Research, 2003, 108, .	3.3	60
177	Martian magnetic morphology: Contributions from the solar wind and crust. Journal of Geophysical Research, 2003, 108, .	3.3	174
178	Hubble Space Telescope observations of sulfur ions in the Io plasma torus: New constraints on the plasma distribution. Journal of Geophysical Research, 2003, 108, .	3.3	10
179	Momentum transfer between the Io plasma wake and Jupiter's ionosphere. Journal of Geophysical Research, 2003, 108, .	3.3	54
180	Modeling variability of plasma conditions in the Io torus. Journal of Geophysical Research, 2003, 108, .	3.3	103

#	Article	IF	CITATIONS
181	Latitudinal structure of outer Io plasma torus. Journal of Geophysical Research, 2002, 107, SMP 24-1.	3.3	67
182	Observations of low-frequency electromagnetic plasma waves upstream from the Martian shock. Journal of Geophysical Research, 2002, 107, SMP 9-1.	3.3	107
183	Ion cyclotron waves, pickup ions, and Io's neutral exosphere. Journal of Geophysical Research, 2000, 105, 25379-25389.	3.3	13
184	Galileo plasma spectrometer measurements of composition and temperature in the Io plasma torus. Journal of Geophysical Research, 1998, 103, 29359-29370.	3.3	43
185	Ion cyclotron waves in the Io torus during the Galileo encounter: Warm plasma dispersion analysis. Geophysical Research Letters, 1997, 24, 2143-2146.	4.0	67
186	Galileo measurements of plasma density in the 10 torus. Geophysical Research Letters, 1997, 24, 2119-2122.	4.0	45
187	The ionization source near Io from Galileo wake data. Geophysical Research Letters, 1997, 24, 2111-2114.	4.0	64
188	Coupling the plasma interaction at lo to Jupiter. Geophysical Research Letters, 1997, 24, 2135-2138.	4.0	54
189	Anisotropy and proton density in the Io plasma torus derived from whistler wave dispersion. Journal of Geophysical Research, 1996, 101, 2699-2706.	3.3	25
190	Analytical model for the density distribution in the Io plasma torus. Journal of Geophysical Research, 1995, 100, 1823.	3.3	21
191	A comparison of the Voyager 1 ultraviolet spectrometer and plasma science measurements of the Io plasma torus. Journal of Geophysical Research, 1995, 100, 19541.	3.3	21
192	Empirical model of the Io plasma torus: Voyager measurements. Journal of Geophysical Research, 1994, 99, 11043.	3.3	303
193	ROSAT observations of the Jupiter aurora. Journal of Geophysical Research, 1994, 99, 14799.	3.3	87
194	Extreme ultraviolet explorer satellite observation of Jupiter's Io plasma torus. Astrophysical Journal, 1994, 426, L51.	4.5	56
195	Giant Planet Magnetospheres. Annual Review of Earth and Planetary Sciences, 1992, 20, 289-328.	11.0	108
196	The abundance of O ⁺⁺ in the Jovian magnetosphere. Geophysical Research Letters, 1992, 19, 79-82.	4.0	38
197	Observation of auroral secondary electrons in the Jovian magnetosphere. Geophysical Research Letters, 1990, 17, 291-294.	4.0	10
198	Pluto‧s interaction with the solar wind. Geophysical Research Letters, 1989, 16, 1229-1232.	4.0	33

#	Article	IF	CITATIONS
199	On the energy crisis in the lo plasma torus. Geophysical Research Letters, 1988, 15, 545-548.	4.0	40
200	The Uranian bow shock: Voyager 2 inbound observations of a high Mach number shock. Journal of Geophysical Research, 1987, 92, 8603-8612.	3.3	60
201	Plasma conditions inside Io's orbit: Voyager measurements. Journal of Geophysical Research, 1985, 90, 311-324.	3.3	74
202	Revised ion temperatures for Voyager plasma measurements in the Io plasma torus. Journal of Geophysical Research, 1985, 90, 1755-1757.	3.3	75
203	Long-lived particulate or gaseous structure in Saturn's outer magnetosphere?. Nature, 1983, 302, 230-232.	27.8	11
204	Alfvén wave propagation in the lo plasma torus. Journal of Geophysical Research, 1983, 88, 3013-3025.	3.3	46
205	Light ion concentrations in Jupiter's inner magnetosphere. Journal of Geophysical Research, 1982, 87, 2241-2245.	3.3	32
206	The proton concentration in the vicinity of the Io plasma torus. Journal of Geophysical Research, 1982, 87, 10395-10400.	3.3	15
207	Direct plasma measurements in the lo torus and inner magnetosphere of Jupiter. Journal of Geophysical Research, 1981, 86, 8447-8466.	3.3	267
208	Time dependent plasma injection by Io. Geophysical Research Letters, 1980, 7, 37-40.	4.0	53
209	Spatial distribution of plasma in the Io torus. Geophysical Research Letters, 1980, 7, 41-44.	4.0	64
210	Plasma Observations Near Jupiter: Initial Results from Voyager 2. Science, 1979, 206, 972-976.	12.6	94
211	Plasma Observations Near Jupiter: Initial Results from Voyager 1. Science, 1979, 204, 987-991.	12.6	220
212	In situidentification of various ionic species in Jupiter's magnetosphere. Nature, 1979, 280, 798-799.	27.8	29
213	Departure from rigid co-rotation of plasma in Jupiter's dayside magnetosphere. Nature, 1979, 280, 803-803.	27.8	96
214	Comparative Auroral Physics: Earth and Other Planets. Geophysical Monograph Series, 0, , 3-26.	0.1	23
215	Auroral Processes on Jupiter and Saturn. Geophysical Monograph Series, 0, , 113-122.	0.1	14
216	When Moons Create Aurora: The Satellite Footprints on Giant Planets. Geophysical Monograph Series, 0, , 133-140.	0.1	32

#	Article	IF	CITATIONS
217	Auroral Signatures of Ionosphere-Magnetosphere Coupling at Jupiter and Saturn. Geophysical Monograph Series, 0, , 205-214.	0.1	8
218	Clues on Ionospheric Electrodynamics From Ir Aurora at Jupiter and Saturn. Geophysical Monograph Series, 0, , 215-224.	0.1	5
219	Energetic charged particle fluxes relevant to Ganymede's polar region. Geophysical Research Letters, 0, , .	4.0	6