
Yoshikatsu Ueda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/429324/publications.pdf Version: 2024-02-01

YOSHIKATSU LIEDA

#	Article	IF	CITATIONS
1	Promotive or suppressive effects of ultrafine bubbles on crop growth depended on bubble concentration and crop species. Plant Production Science, 2022, 25, 78-83.	2.0	8
2	Ultrafine bubbles alleviated osmotic stress in soybean seedlings. Plant Production Science, 2022, 25, 218-223.	2.0	5
3	Attenuation Coefficient of Ultrafine Bubble Water in Broadband Ultrasound and Measurement of Bubble Number Density. Japanese Journal of Multiphase Flow, 2022, 36, 20-27.	0.3	Ο
4	Micro Bubble Generation with Pressurized Droplet from Ultra Fine Bubble Water and Its Cleaning Effect. Japanese Journal of Multiphase Flow, 2021, 35, 36-42.	0.3	2
5	Sterilization and Virus Inactivation by Fine Bubbles. Japanese Journal of Multiphase Flow, 2021, 35, 251-258.	0.3	3
6	A machine learning approach to the prediction of the dispersion property of oxide glass. AIP Advances, 2021, 11, .	1.3	3
7	Data-driven design of glasses with desirable optical properties using statistical regression. AIP Advances, 2020, 10, .	1.3	7
8	Analysis on XAFS for Xe ulfra fine bubbles in pure water. Radiation Physics and Chemistry, 2020, 176, 109071.	2.8	3
9	A study of the influence of temperature and detergent concentration on the removal of lipstick stains using airâ€supersaturated water, where fine bubbles are generated by ultrasonic stimulation. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2459.	1.5	4
10	Ultrafine bubbles effectively enhance soybean seedling growth under nutrient deficit stress. Plant Production Science, 2020, 23, 366-373.	2.0	15
11	Effect of Ultrafine Bubble onto Accumulation and Structure of Urinary Calculus. Japanese Journal of Multiphase Flow, 2018, 32, 12-18.	0.3	5
12	Structural analysis of mixed alkali borosilicate glasses containing Cs+ and Na+ using strong magnetic field magic angle spinning nuclear magnetic resonance. Journal of Asian Ceramic Societies, 2017, 5, 7-12.	2.3	12
13	Effects of Flow Rate and Cas Species on Microbubble and Nanobubble Transport in Porous Media. Journal of Environmental Engineering, ASCE, 2017, 143, .	1.4	13
14	Nuclear Magnetic Resonance Study of Cs Adsorption onto Clay Minerals. , 2016, , 3-11.		3
15	Remediation Technology For Cesium Using Microbubbled Water Containing Sodium Silicate. , 2016, , 79-87.		2
16	Local structure of alkalis in mixed-alkali borate glass to elucidate the origin of mixed-alkali effect. Journal of Asian Ceramic Societies, 2015, 3, 412-416.	2.3	11
17	Electric and Electrochemical Properties of Fine Bubble Water and Analysis of the Correlation with Applied Research. Japanese Journal of Multiphase Flow, 2015, 28, 555-562.	0.3	4
18	Do soybeans select specific species of <i>Bradyrhizobium</i> during growth?. Communicative and Integrative Biology, 2015, 8, e992734.	1.4	25

Yoshikatsu Ueda

#	Article	IF	CITATIONS
19	Accumulation of 137Cs by rice grown in four types of soil contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident in 2011 and 2012. Journal of Environmental Radioactivity, 2015, 140, 59-64.	1.7	20
20	Changes in the Bacterial Community of Soybean Rhizospheres during Growth in the Field. PLoS ONE, 2014, 9, e100709.	2.5	243
21	Pyrosequencing assessment of rhizosphere fungal communities from a soybean field. Canadian Journal of Microbiology, 2014, 60, 687-690.	1.7	21
22	Structural analysis of alkali cations in mixed alkali silicate glasses by ²³ Na and ¹³³ Cs MAS NMR. Journal of Asian Ceramic Societies, 2014, 2, 333-338.	2.3	11
23	Fleshness Enhancement of Cut Flowers by Using Water Containing Fine Bubbles. Japanese Journal of Multiphase Flow, 2014, 28, 340-344.	0.3	2
24	Effect of crystal structure of manganese dioxide on response for electrolyte of a hydrogen sensor operative at room temperature. Sensors and Actuators B: Chemical, 2013, 183, 641-647.	7.8	12
25	Removal of radioactive Cs from gravel conglomerate using water containing air bubbles. Water Science and Technology, 2013, 67, 996-999.	2.5	11
26	Preparation of proton-conductive organic–inorganic hybrid titanophosphite membranes. Solid State Ionics, 2012, 225, 232-235.	2.7	3
27	Electrochemical property of proton-conductive manganese dioxide for sensoring hydrogen gas concentration. Solid State Ionics, 2012, 225, 282-285.	2.7	6
28	Organic–inorganic hybrid titanophosphite proton conductive membranes with graded monomer conversion. Solid State Ionics, 2012, 206, 22-27.	2.7	1
29	Sensoring hydrogen gas concentration using electrolyte made of proton conductive manganese dioxide. Sensors and Actuators B: Chemical, 2011, 155, 893-896.	7.8	7
30	Structure manufacturing of proton-conducting organic–inorganic hybrid silicophosphite membranes by solventless synthesis. Journal of Materials Research, 2011, 26, 796-803.	2.6	7
31	A new instrument for the study of wave-particle interactions in space: One-chip Wave-Particle Interaction Analyzer. Earth, Planets and Space, 2009, 61, 765-778.	2.5	17

32 Thrust Characteristics of Magnetic Sail Spacecraft Using Superconducting Coils. , 2008, , .