
Hisashi Nishiwaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4293157/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Germination Stimulant Activity of Isothiocyanates on Phelipanche spp Plants, 2022, 11, 606.	3.5	9
2	Plant Growth Suppressive Activity of (<i>R</i>)-3-(7′-Aryl-9′-hydroxyprop-8′-yl)coumarin, Structural Isomer of <i>Z</i> -2-Hydroxybenzylidene-γ-butyrolactone-type Lignan. Journal of Agricultural and Food Chemistry, 2022, 70, 8767-8775.	5.2	3
3	Stereocontrolled syntheses of (â^')- and (+)-γ-diisoeugenol along with optically active eight stereoisomers of 7,8′-epoxy-8,7′-neolignan. Organic and Biomolecular Chemistry, 2021, 19, 2168-2176.	2.8	1
4	Aqueous Extract from Leaves of Citrus unshiu Attenuates Lipopolysaccharide-Induced Inflammatory Responses in a Mouse Model of Systemic Inflammation. Plants, 2021, 10, 1708.	3.5	2
5	Structure-activity relationship of the aromatic moiety of 6-substituted 5,6-dihydro-2-pyrone to find the novel compound showing higher plant growth inhibitory activity. Bioscience, Biotechnology and Biochemistry, 2021, , .	1.3	0
6	Syntheses of all eight stereoisomers of conidendrin. Bioscience, Biotechnology and Biochemistry, 2020, 84, 1986-1996.	1.3	3
7	Functional and structural characterization of a novel L-fucose mutarotase involved in non-phosphorylative pathway of L-fucose metabolism. Biochemical and Biophysical Research Communications, 2020, 528, 21-27.	2.1	3
8	Discovery of stereospecific cytotoxicity of (8R,8′R)-trans-arctigenin against insect cells and structure-activity relationship on aromatic ring. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127191.	2.2	3
9	Design of 92 New 9-Norlignan Derivatives and Their Effect on Cell Viabilities of Cancer and Insect Cells. Journal of Agricultural and Food Chemistry, 2019, 67, 7880-7885.	5.2	5
10	Syntheses and Phytotoxicity of All Stereoisomers of 6-(2-Hydroxy-6-phenylhex-1-yl)-5,6-dihydro-2 <i>H</i> -pyran-2-one and Determination of the Effect of the α,β-Unsaturated Carbonyl Structure and Hydroxy Group Bonding to Chiral Carbon. Journal of Agricultural and Food Chemistry, 2019, 67, 12558-12564.	5.2	5
11	Novel non-phosphorylative pathway of pentose metabolism from bacteria. Scientific Reports, 2019, 9, 155.	3.3	45
12	Docosahexaenoyl ethanolamide mitigates IgE-mediated allergic reactions by inhibiting mast cell degranulation and regulating allergy-related immune cells. Scientific Reports, 2019, 9, 16213.	3.3	16
13	Cytotoxicity against HL60 Cells of Ficifolidione Derivatives with Methyl, n-Pentyl, and n-Heptyl Groups. Molecules, 2019, 24, 4081.	3.8	1
14	Conversion of carlactone to carlactonoic acid is a conserved function of <scp>MAX</scp> 1 homologs in strigolactone biosynthesis. New Phytologist, 2018, 218, 1522-1533.	7.3	147
15	Effects of Substituents on the Aromatic Ring of Lignano-9,9′-lactone on Plant Growth Inhibitory Activity. Journal of Agricultural and Food Chemistry, 2018, 66, 4551-4558.	5.2	5
16	Development of a Visualization Method for Imidacloprid in Drosophila melanogaster via Imaging Mass Spectrometry. Analytical Sciences, 2018, 34, 991-996.	1.6	12
17	Conversion to purpurogallin, a key step in the mechanism of the potent xanthine oxidase inhibitory activity of pyrogallol. Free Radical Biology and Medicine, 2017, 106, 228-235.	2.9	24
18	Structure-Antifungal Activity Relationship of Fluorinated Dihydroguaiaretic Acid Derivatives and Preventive Activity against <i>Alternaria alternata</i> Japanese Pear Pathotype. Journal of Agricultural and Food Chemistry, 2017, 65, 6701-6707.	5.2	9

Hisashi Nishiwaki

#	Article	IF	CITATIONS
19	Syntheses of cytotoxic novel arctigenin derivatives bearing halogen and alkyl groups on aromatic rings. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4199-4203.	2.2	4
20	Absorption, Metabolism, and Excretion by Freely Moving Rats of 3,4-DHPEA-EDA and Related Polyphenols from Olive Fruits (<i>Olea europaea</i>). Journal of Nutrition and Metabolism, 2016, 2016, 1-10.	1.8	17
21	Effect of the structure of dietary epoxylignan on its cytotoxic activity: relationship between the structure and the activity of 7,7′-epoxylignan and the introduction of apoptosis by caspase 3/7. Bioscience, Biotechnology and Biochemistry, 2016, 80, 669-675.	1.3	9
22	Enantioselective syntheses of both enantiomers of 9′-dehydroxyimperanene and 7,8-dihydro-9′-dehydroxyimperanene and the comparison of biological activity between 9-norlignans and dihydroguaiaretic acids. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3019-3023.	2.2	6
23	Evaluation of Plant Growth Regulatory Activity of Furofuran Lignan Bearing a 7,9′:7′,9-Diepoxy Structure Using Optically Pure (+)- and (â^')-Enantiomers. Journal of Agricultural and Food Chemistry, 2015, 63, 5224-5228.	5.2	21
24	Structure–activity relationships of amide–phosphonate derivatives as inhibitors of the human soluble epoxide hydrolase. Bioorganic and Medicinal Chemistry, 2015, 23, 7199-7210.	3.0	15
25	Docking model of the nicotinic acetylcholine receptor and nitromethylene neonicotinoid derivatives with a longer chiral substituent and their biological activities. Bioorganic and Medicinal Chemistry, 2015, 23, 759-769.	3.0	5
26	Acute Larvicidal Activity against Mosquitoes and Oxygen Consumption Inhibitory Activity of Dihydroguaiaretic Acid Derivatives. Journal of Agricultural and Food Chemistry, 2015, 63, 2442-2448.	5.2	3
27	Revised Stereochemistry of Ficifolidione and Its Biological Activities against Insects and Cells. Journal of Natural Products, 2015, 78, 43-49.	3.0	10
28	Syntheses of natural 1,3-polyol/α-pyrone and its all stereoisomers to estimate antifungal activities against plant pathogenic fungi. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2189-2192.	2.2	4
29	Identification and Characterization of Bifunctional Proline Racemase/Hydroxyproline Epimerase from Archaea: Discrimination of Substrates and Molecular Evolution. PLoS ONE, 2015, 10, e0120349.	2.5	15
30	13th IUPAC International Congress of Pesticide Chemistry: Report (V). Japanese Journal of Pesticide Science, 2015, 40, 127-131.	0.0	0
31	Structure–activity relationships of substituted oxyoxalamides as inhibitors of the human soluble epoxide hydrolase. Bioorganic and Medicinal Chemistry, 2014, 22, 1163-1175.	3.0	12
32	Structure-Plant Phytotoxic Activity Relationship of 7,7′-epoxylignanes, (+)- and (â^')-verrucosin: Simplification on the aromatic ring substituents. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4798-4803.	2.2	6
33	Synthesis of All Stereoisomers of 3,3′-Dimethoxy-7,7′-epoxylignane-4,4′-diol and Their Plant Growth Inhibitory Activity. Journal of Agricultural and Food Chemistry, 2014, 62, 651-659.	5.2	21
34	Cytotoxic activity of butane type of 1,7-seco-2,7′-cyclolignanes and apoptosis induction by Caspase 9 and 3. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4231-4235.	2.2	11
35	Cytotoxic Activity of Dietary Lignan and Its Derivatives: Structure–Cytotoxic Activity Relationship of Dihydroguaiaretic Acid. Journal of Agricultural and Food Chemistry, 2014, 62, 5305-5315.	5.2	11
36	Structure–cytotoxic activity relationship of sesquilignan, morinol A. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4923-4930.	2.2	9

Hisashi Nishiwaki

#	Article	IF	CITATIONS
37	Quantitative Structure–Activity Relationship Analysis of Antifungal (+)-Dihydroguaiaretic Acid Using 7-Phenyl Derivatives. Journal of Agricultural and Food Chemistry, 2013, 61, 8548-8555.	5.2	9
38	Structure–Plant Growth Inhibitory Activity Relationship of Lariciresinol. Journal of Agricultural and Food Chemistry, 2013, 61, 12297-12306.	5.2	14
39	First Discovery of Insecticidal Activity of 9,9′-Epoxylignane and Dihydroguaiaretic Acid against Houseflies and the Structure–Activity Relationship. Journal of Agricultural and Food Chemistry, 2013, 61, 4318-4325.	5.2	14
40	Effect of substituents at phenyl group of 7,7′-dioxo-9,9′-epoxylignane on antifungal activity. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6740-6744.	2.2	4
41	Synthesis of imidacloprid derivatives with a chiral alkylated imidazolidine ring and evaluation of their insecticidal activity and affinity to the nicotinic acetylcholine receptor. Bioorganic and Medicinal Chemistry, 2012, 20, 6305-6312.	3.0	10
42	Larvicidal Activity of (â^')-Dihydroguaiaretic Acid Derivatives against <i>Culex pipiens</i> . Bioscience, Biotechnology and Biochemistry, 2011, 75, 1735-1739.	1.3	18
43	Affinity to the Nicotinic Acetylcholine Receptor and Insecticidal Activity of Chiral Imidacloprid Derivatives with a Methylated Imidazolidine Ring. Bioscience, Biotechnology and Biochemistry, 2011, 75, 780-782.	1.3	8
44	Stereoselective Syntheses of All Stereoisomers of Lariciresinol and Their Plant Growth Inhibitory Activities. Journal of Agricultural and Food Chemistry, 2011, 59, 13089-13095.	5.2	32
45	The 12th IUPAC International Congress of Pesticide Chemistry. Journal of Pesticide Sciences, 2011, 36, 142-171.	1.4	0
46	Antifungal Activity of Morinol B Derivatives of Tetrahydropyran Sesquilignan. Bioscience, Biotechnology and Biochemistry, 2010, 74, 2071-2076.	1.3	8
47	lgE-Suppressive Activity of (â^)-Matairesinol and Its Structure-Activity Relationship. Bioscience, Biotechnology and Biochemistry, 2010, 74, 1878-1883.	1.3	12
48	Antimicrobial Activity of Stereoisomers of Butane-Type Lignans. Bioscience, Biotechnology and Biochemistry, 2009, 73, 1806-1810.	1.3	28
49	Searching for the Stereoisomer of 7,7′-Epoxylignan Showing the Most Potent Antifungal Activity and Finding the 3-(Trifluoromethyl)-4-hydroxy-3′-fluoro Derivative to Have the Highest Activity. ACS Agricultural Science and Technology, 0, , .	2.3	2