Oxana V Galzitskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4292775/publications.pdf

Version: 2024-02-01

159585 182427 156 3,582 30 51 citations h-index g-index papers 159 159 159 3436 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Search for functions of intrinsically disordered prion-like domains for FET proteins involved in amyotrophic lateral sclerosis and frontotemporal dementia., 2022,, 117-133.		O
2	Simulations of the Stretching of Two Models of Filamentous Actin at a Constant Velocity Using Method of Molecular Dynamics. Lecture Notes on Data Engineering and Communications Technologies, 2022, , 379-385.	0.7	0
3	Multiple Antimicrobial Effects of Hybrid Peptides Synthesized Based on the Sequence of Ribosomal S1 Protein from Staphylococcus aureus. International Journal of Molecular Sciences, 2022, 23, 524.	4.1	12
4	Inâ€depth analysis of amino acid and nucleotide sequences of Hsp60: How conserved is this protein?. Proteins: Structure, Function and Bioinformatics, 2022, 90, 1119-1141.	2.6	2
5	Determination of the Most Stable Packing of Peptides from Ribosomal S1 Protein, Protein Bgl2p, and $A\hat{l}^2$ peptide in \hat{l}^2 -layers During Molecular Dynamics Simulations. Methods in Molecular Biology, 2022, 2340, 221-233.	0.9	2
6	Search for Structural Basis of Interactions of Biogenic Amines with Human TAAR1 and TAAR6 Receptors. International Journal of Molecular Sciences, 2022, 23, 209.	4.1	6
7	Amyloidogenic Peptides: New Class of Antimicrobial Peptides with the Novel Mechanism of Activity. International Journal of Molecular Sciences, 2022, 23, 5463.	4.1	8
8	Is It Possible to Find an Antimicrobial Peptide That Passes the Membrane Bilayer with Minimal Force Resistance? An Attempt at a Predictive Approach by Molecular Dynamics Simulation. International Journal of Molecular Sciences, 2022, 23, 5997.	4.1	3
9	Extended disordered regions of ribosome-associated NAC proteins paralogs belong only to the germline in Drosophila melanogaster. Scientific Reports, 2022, 12, .	3.3	1
10	Myosin Binding Protein-C Forms Amyloid-Like Aggregates In Vitro. International Journal of Molecular Sciences, 2021, 22, 731.	4.1	4
11	Sequence and evolutionary analysis of bacterial ribosomal <scp>S1</scp> proteins. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1111-1124.	2.6	5
12	Identification of Amyloidogenic Regions in Pseudomonas aeruginosa Ribosomal S1 Protein. International Journal of Molecular Sciences, 2021, 22, 7291.	4.1	8
13	Exploring Amyloidogenicity of Peptides From Ribosomal S1 Protein to Develop Novel AMPs. Frontiers in Molecular Biosciences, 2021, 8, 705069.	3.5	8
14	Is It Possible to Create Antimicrobial Peptides Based on the Amyloidogenic Sequence of Ribosomal S1 Protein of P. aeruginosa?. International Journal of Molecular Sciences, 2021, 22, 9776.	4.1	11
15	Is there an advantageous arrangement of aromatic residues in proteins? Statistical analysis of aromatic interactions in globular proteins. Computational and Structural Biotechnology Journal, 2021, 19, 5960-5968.	4.1	3
16	Mechanism of Amyloid Gel Formation by Several Short Amyloidogenic Peptides. Nanomaterials, 2021, 11, 3129.	4.1	2
17	New Model for Stacking Monomers in Filamentous Actin from Skeletal Muscles of Oryctolagus cuniculus. International Journal of Molecular Sciences, 2020, 21, 8319.	4.1	6
18	MIRRAGGE – Minimum Information Required for Reproducible AGGregation Experiments. Frontiers in Molecular Neuroscience, 2020, 13, 582488.	2.9	19

#	Article	IF	CITATIONS
19	Amyloidogenic Propensities of Ribosomal S1 Proteins: Bioinformatics Screening and Experimental Checking. International Journal of Molecular Sciences, 2020, 21, 5199.	4.1	18
20	Comparative Analysis of Proteomes of a Number of Nosocomial Pathogens by KEGG Modules and KEGG Pathways. International Journal of Molecular Sciences, 2020, 21, 7839.	4.1	12
21	Antimicrobial and Amyloidogenic Activity of Peptides Synthesized on the Basis of the Ribosomal S1 Protein from Thermus Thermophilus. International Journal of Molecular Sciences, 2020, 21, 6382.	4.1	18
22	Antimicrobial and Amyloidogenic Activity of Peptides. Can Antimicrobial Peptides Be Used against SARS-CoV-2?. International Journal of Molecular Sciences, 2020, 21, 9552.	4.1	45
23	Bioinformatics Analysis of Actin Molecules: Why Quantity Does Not Translate Into Quality?. Frontiers in Genetics, 2020, 11, 617763.	2.3	8
24	Megahertz single-particle imaging at the European XFEL. Communications Physics, 2020, 3, .	5.3	58
25	Determination of amyloid core regions of insulin analogues fibrils. Prion, 2020, 14, 149-162.	1.8	13
26	Comparative Analysis of Aggregation of Thermus thermophilus Ribosomal Protein bS1 and Its Stable Fragment. Biochemistry (Moscow), 2020, 85, 344-354.	1.5	8
27	Structural and Functional Peculiarities of α-Crystallin. Biology, 2020, 9, 85.	2.8	13
28	Disordered Residues and Patterns in the Protein Data Bank. Molecules, 2020, 25, 1522.	3.8	7
29	How Quickly Do Proteins Fold and Unfold, and What Structural Parameters Correlate with These Values?. Biomolecules, 2020, 10, 197.	4.0	8
30	Investigation of the Relationship between the S1 Domain and Its Molecular Functions Derived from Studies of the Tertiary Structure. Molecules, 2019, 24, 3681.	3.8	11
31	The binding of monomeric amyloid \hat{l}^2 peptide to serum albumin is affected by major plasma unsaturated fatty acids. Biochemical and Biophysical Research Communications, 2019, 510, 248-253.	2.1	18
32	Repeats in S1 Proteins: Flexibility and Tendency for Intrinsic Disorder. International Journal of Molecular Sciences, 2019, 20, 2377.	4.1	15
33	Is there codon usage bias for poly-Q stretches in the human proteome?. Journal of Bioinformatics and Computational Biology, 2019, 17, 1950010.	0.8	2
34	Identification of Amyloidogenic Regions in the Spine of Insulin Fibrils. Biochemistry (Moscow), 2019, 84, 47-55.	1.5	10
35	The number of domains in the ribosomal protein S1 as a hallmark of the phylogenetic grouping of bacteria. PLoS ONE, 2019, 14, e0221370.	2.5	18
36	Ile351, Leu355 and Ile461 residues are essential for catalytic activity of bovine cytochrome P450scc (CYP11A1). Steroids, 2019, 143, 80-90.	1.8	1

#	Article	IF	CITATIONS
37	Oligomers Are Promising Targets for Drug Development in the Treatment of Proteinopathies. Frontiers in Molecular Neuroscience, 2019, 12, 319.	2.9	15
38	New Mechanism of Amyloid Fibril Formation. Current Protein and Peptide Science, 2019, 20, 630-640.	1.4	16
39	What is Responsible for Atypical Dependence of the Rate of Amyloid Formation on Protein Concentration: Fibril-Catalyzed Initiation of New Fibrils or Competition with Oligomers?. Journal of Physical Chemistry Letters, 2018, 9, 1002-1006.	4.6	5
40	To Be Fibrils or To Be Nanofilms? Oligomers Are Building Blocks for Fibril and Nanofilm Formation of Fragments of $A\hat{l}^2$ Peptide. Langmuir, 2018, 34, 2332-2343.	3.5	33
41	Comparative mechanical unfolding studies of spectrin domains R15, R16 and R17. Journal of Structural Biology, 2018, 201, 162-170.	2.8	9
42	Studies of the Process of Amyloid Formation by AÎ ² Peptide. Biochemistry (Moscow), 2018, 83, S62-S80.	1.5	10
43	Analysis of Insulin Analogs and the Strategy of Their Further Development. Biochemistry (Moscow), 2018, 83, S146-S162.	1.5	9
44	Proteome-scale understanding of relationship between homo-repeat enrichments and protein aggregation properties. PLoS ONE, 2018, 13, e0206941.	2.5	6
45	Should the Treatment of Amyloidosis Be Personified? Molecular Mechanism of Amyloid Formation by $\hat{Al^2}$ Peptide and Its Fragments. Journal of Alzheimer's Disease Reports, 2018, 2, 181-199.	2.2	13
46	Two Views on the Protein Folding Puzzle. , 2018, , 391-412.		0
47	Search for Functional Flexible Regions in the G-protein Family: New Reading of the FoldUnfold Program. Protein and Peptide Letters, 2018, 25, 589-598.	0.9	2
48	<scp>T</scp> axonomic distribution, repeats, and functions of the S1 domainâ€containing proteins as members of the OBâ€fold family. Proteins: Structure, Function and Bioinformatics, 2017, 85, 602-613.	2.6	17
49	Proteome evolution of deep-sea hydrothermal vent alvinellid polychaetes supports the ancestry of thermophily and subsequent adaptation to cold in some lineages. Genome Biology and Evolution, 2017, 9, evw298.	2.5	39
50	There and back again: Two views on the protein folding puzzle. Physics of Life Reviews, 2017, 21, 56-71.	2.8	33
51	α-Crystallins are small heat shock proteins: Functional and structural properties. Biochemistry (Moscow), 2017, 82, 106-121.	1.5	9
52	Rosetta Stone for Amyloid Fibrils: The Key Role of Ring-Like Oligomers in Amyloidogenesis. Journal of Alzheimer's Disease, 2017, 59, 785-795.	2.6	26
53	Hepatic and Aortic Arch Expression and Serum Levels of Syndecan-1 in ApoE Mice. The Open Biochemistry Journal, 2017, 11, 77-93.	0.5	4
54	Insulin and Lispro Insulin: What is Common and Different in their Behavior?. Current Protein and Peptide Science, 2016, 18, 57-64.	1.4	14

#	Article	IF	Citations
55	The Mechanism Underlying Amyloid Polymorphism is Opened for Alzheimer's Disease Amyloid-β Peptide. Journal of Alzheimer's Disease, 2016, 54, 821-830.	2.6	30
56	Non-random distribution of homo-repeats: links with biological functions and human diseases. Scientific Reports, 2016, 6, 26941.	3.3	32
57	X-ray diffraction and electron microscopy data for amyloid formation of $A\hat{l}^2$ 40 and $A\hat{l}^2$ 42. Data in Brief, 2016, 8, 108-113.	1.0	9
58	Determination of size of folding nuclei of fibrils formed from recombinant $\hat{A^2}(1-40)$ peptide. Biochemistry (Moscow), 2016, 81, 538-547.	1.5	14
59	Smooth muscle titin forms <i>inÂvitro</i> amyloid aggregates. Bioscience Reports, 2016, 36, .	2.4	14
60	Dataset of the molecular dynamics simulations of bilayers consisting of short amyloidogenic peptide VDSWNVLVAG from Bgl2p–glucantransferase of S. cerevisiae cell wall. Data in Brief, 2016, 9, 597-601.	1.0	2
61	Structural model of amyloid fibrils for amyloidogenic peptide from Bgl2p–glucantransferase of S. cerevisiae cell wall and its modifying analog. New morphology of amyloid fibrils. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1489-1499.	2.3	22
62	Peptide A \hat{I}^2 (16-25) forms nanofilms in the process of its aggregation. Biochemistry (Moscow), 2016, 81, 755-761.	1.5	3
63	Determination of regions involved in amyloid fibril formation for ${\rm A\hat{l}^2}(1\text{-}40)$ peptide. Biochemistry (Moscow), 2016, 81, 762-769.	1.5	14
64	Search for conserved amino acid residues of the $\hat{l}\pm$ -crystallin proteins of vertebrates. Journal of Bioinformatics and Computational Biology, 2016, 14, 1641004.	0.8	7
65	One of the possible mechanisms of amyloid fibrils formation based on the sizes of primary and secondary folding nuclei of A \hat{l}^2 40 and A \hat{l}^2 42. Journal of Structural Biology, 2016, 194, 404-414.	2.8	37
66	Reversible and Irreversible Aggregation of Proteins from the FET Family: Influence of Repeats in Protein Chain on Its Aggregation Capacity. Current Protein and Peptide Science, 2016, 17, 319-331.	1.4	4
67	Studies of Polymorphism of Amyloid- \hat{l}^2 42 Peptide from Different Suppliers. Journal of Alzheimer's Disease, 2015, 47, 583-593.	2.6	32
68	Theoretical Search for RNA Folding Nuclei. Entropy, 2015, 17, 7827-7847.	2.2	1
69	How Common Is Disorder? Occurrence of Disordered Residues in Four Domains of Life. International Journal of Molecular Sciences, 2015, 16, 19490-19507.	4.1	24
70	Repeats are one of the main characteristics of RNA-binding proteins with prion-like domains. Molecular BioSystems, 2015, 11, 2210-2218.	2.9	12
71	Mechanical stability analysis of the protein L immunoglobulinâ€binding domain by full alanine screening using molecular dynamics simulations. Biotechnology Journal, 2015, 10, 386-394.	3.5	6
72	Cell communication using intrinsically disordered proteins: what can syndecans say?. Journal of Biomolecular Structure and Dynamics, 2015, 33, 1037-1050.	3.5	16

#	Article	IF	CITATIONS
73	Computational Approaches to Identification of Aggregation Sites and the Mechanism of Amyloid Growth. Advances in Experimental Medicine and Biology, 2015, 855, 213-239.	1.6	19
74	What handedness and angles between helices has the studied three-helical protein domain?. Bioinformatics, 2015, 31, 963-965.	4.1	2
75	Role of Syndecans in Lipid Metabolism and Human Diseases. Advances in Experimental Medicine and Biology, 2015, 855, 241-258.	1.6	14
76	Mechanisms of amyloid fibril formation. Biochemistry (Moscow), 2014, 79, 1515-1527.	1.5	15
77	HRaP: database of occurrence of HomoRepeats and patterns in proteomes. Nucleic Acids Research, 2014, 42, D273-D278.	14.5	30
78	Haloarcula marismortui archaellin genes as ecoparalogs. Extremophiles, 2014, 18, 341-349.	2.3	22
79	Right- and left-handed three-helix proteins. II. Similarity and differences in mechanical unfolding of proteins. Proteins: Structure, Function and Bioinformatics, 2014, 82, 90-102.	2.6	10
80	How to Determine the Size of Folding Nuclei of Protofibrils from the Concentration Dependence of the Rate and Lag-Time of Aggregation. I. Modeling the Amyloid Protofibril Formation. Journal of Physical Chemistry B, 2014, 118, 1189-1197.	2.6	48
81	How to Determine the Size of Folding Nuclei of Protofibrils from the Concentration Dependence of the Rate and Lag-Time of Aggregation. II. Experimental Application for Insulin and LysPro Insulin: Aggregation Morphology, Kinetics, and Sizes of Nuclei. Journal of Physical Chemistry B, 2014, 118, 1198-1206.	2.6	27
82	Folding of Right†and Leftâ€Handed Threeâ€Helix Proteins. Israel Journal of Chemistry, 2014, 54, 1126-1136.	2.3	3
83	Activation of Neuronal Defense Mechanisms in Response to Pathogenic Factors Triggering Induction of Amyloidosis in Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 40, 19-32.	2.6	9
84	IsUnstruct: prediction of the residue status to be ordered or disordered in the protein chain by a method based on the Ising model. Journal of Biomolecular Structure and Dynamics, 2013, 31, 1034-1043.	3.5	48
85	Experimental and theoretical studies of mechanical unfolding of different proteins. Biochemistry (Moscow), 2013, 78, 1216-1227.	1.5	3
86	An N-terminal, 830 residues intrinsically disordered region of the cytoskeleton-regulatory protein supervillin contains Myosin II- and F-actin-binding sites. Journal of Biomolecular Structure and Dynamics, 2013, 31, 1150-1159.	3.5	9
87	A novel web server predicts amino acid residue protection against hydrogen–deuterium exchange. Bioinformatics, 2013, 29, 1375-1381.	4.1	13
88	Structure and functions of syndecans in vertebrates. Biochemistry (Moscow), 2013, 78, 1071-1085.	1.5	35
89	Right†and leftâ€handed threeâ€helix proteins. I. Experimental and simulation analysis of differences in folding and structure. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1527-1541.	2.6	6
90	Intensive protein synthesis in neurons and phosphorylation of beta-amyloid precursor protein and tau-protein are triggering factors of neuronal amyloidosis and Alzheimer's disease. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2013, 7, 278-293.	0.4	0

#	Article	IF	Citations
91	Stability and rigidity/flexibilityâ€"Two sides of the same coin?. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 854-866.	2.3	43
92	Amyloidogenic peptides of yeast cell wall glucantransferase Bgl2p as a model for the investigation of its pH-dependent fibril formation. Prion, 2013, 7, 175-184.	1.8	21
93	Structural polymorphism and possible pathways of amyloid fibril formation on the example of insulin protein. Biochemistry (Moscow), 2012, 77, 1237-1247.	1.5	29
94	Nucleationâ€based prediction of the protein folding rate and its correlation with the folding nucleus size. Proteins: Structure, Function and Bioinformatics, 2012, 80, 2711-2727.	2.6	9
95	Comparison of experimental and theoretical data on hydrogen-deuterium exchange for ten globular proteins. Biochemistry (Moscow), 2012, 77, 616-623.	1.5	4
96	Cunning Simplicity of a Stoichiometry Driven Protein Folding Thesis. Journal of Biomolecular Structure and Dynamics, 2011, 28, 595-598.	3.5	4
97	The Ising model for prediction of disordered residues from protein sequence alone. Physical Biology, 2011, 8, 035004.	1.8	64
98	The role of \hat{I}^2 -amyloid peptide in neurodegenerative diseases. Ageing Research Reviews, 2011, 10, 440-452.	10.9	49
99	Disordered Patterns in Clustered Protein Data Bank and in Eukaryotic and Bacterial Proteomes. PLoS ONE, 2011, 6, e27142.	2.5	20
100	Accessible Surfaces of Beta Proteins Increase with Increasing Protein Molecular Mass More Rapidly than Those of Other Proteins. PLoS ONE, 2011, 6, e28464.	2.5	11
101	Bacterial proteins fold faster than eukaryotic proteins with simple folding kinetics. Biochemistry (Moscow), 2011, 76, 225-235.	1.5	5
102	Prediction of folding nuclei in tRNA molecules. Biochemistry (Moscow), 2011, 76, 236-244.	1.5	2
103	Modeling amyloid fibril formation. Biochemistry (Moscow), 2011, 76, 366-373.	1.5	1
104	Regions which are Responsible for Swapping are also Responsible for Folding and Misfolding. The Open Biochemistry Journal, 2011, 5, 27-36.	0.5	5
105	Two-, Three-, and Four-State Events Occur in the Mechanical Unfolding of Small Protein L Using Molecular Dynamics Simulations. Protein and Peptide Letters, 2010, 17, 92-103.	0.9	11
106	Estimation of Protein Folding Rate from Monte Carlo Simulations and Entropy Capacity. Current Protein and Peptide Science, 2010, 11, 523-537.	1.4	7
107	Statistical analysis of unstructured amino acid residues in protein structures. Biochemistry (Moscow), 2010, 75, 192-200.	1.5	9
108	Is protein folding rate dependent on number of folding stages? Modeling of protein folding with ferredoxin-like fold. Biochemistry (Moscow), 2010, 75, 717-727.	1.5	0

#	Article	IF	CITATIONS
109	Influence of organization of native protein structure on its folding: Modeling of the folding of α-helical proteins. Biochemistry (Moscow), 2010, 75, 995-1005.	1.5	1
110	A COMPARATIVE ANALYSIS OF FOLDING PATHWAYS OF THERMOPHILIC AND MESOPHILIC PROTEINS BY MONTE CARLO SIMULATIONS. Journal of Bioinformatics and Computational Biology, 2010, 08, 395-411.	0.8	6
111	ComSin: database of protein structures in bound (complex) and unbound (single) states in relation to their intrinsic disorder. Nucleic Acids Research, 2010, 38, D283-D287.	14.5	31
112	Influence of Conformational Entropy on the Protein Folding Rate. Entropy, 2010, 12, 961-982.	2.2	11
113	Library of Disordered Patterns in 3D Protein Structures. PLoS Computational Biology, 2010, 6, e1000958.	3.2	60
114	FLEXIBILITY AND MOBILITY IN MESOPHILIC AND THERMOPHILIC HOMOLOGOUS PROTEINS FROM MOLECULAR DYNAMICS AND FOLDUNFOLD METHOD. Journal of Bioinformatics and Computational Biology, 2010, 08, 377-394.	0.8	14
115	FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence. Bioinformatics, 2010, 26, 326-332.	4.1	338
116	Coupling between Properties of the Protein Shape and the Rate of Protein Folding. PLoS ONE, 2009, 4, e6476.	2.5	62
117	Intrinsic Disorder in Protein Interactions: Insights From a Comprehensive Structural Analysis. PLoS Computational Biology, 2009, 5, e1000316.	3.2	104
118	Are the same or different amino acid residues responsible for correct and incorrect protein folding?. Biochemistry (Moscow), 2009, 74, 186-193.	1.5	3
119	Comparison of transition states obtained upon modeling of unfolding of immunoglobulin-binding domains of proteins L and G caused by external action with transition states obtained in the absence of force probed by experiments. Biochemistry (Moscow), 2009, 74, 316-328.	1.5	4
120	Prediction of amino acid residues protected from hydrogen-deuterium exchange in a protein chain. Biochemistry (Moscow), 2009, 74, 888-897.	1.5	9
121	Multiple Unfolding Intermediates Obtained by Molecular Dynamic Simulations under Stretching for Immunoglobulin-Binding Domain of Protein G. The Open Biochemistry Journal, 2009, 3, 66-77.	0.5	8
122	More compact protein globules exhibit slower folding rates. Proteins: Structure, Function and Bioinformatics, 2008, 70, 329-332.	2.6	32
123	To be folded or to be unfolded?. Protein Science, 2008, 13, 2871-2877.	7.6	69
124	COMPACTNESS DETERMINES PROTEIN FOLDING TYPE. Journal of Bioinformatics and Computational Biology, 2008, 06, 667-680.	0.8	21
125	Amyloid-like properties of <i> Saccharomyces cerevisiae < /i > cell wall glucantransferase Bgl2p. Prion, 2008, 2, 91-96.</i>	1.8	26
126	PREDICTION OF LOOP REGIONS IN PROTEIN SEQUENCE. Journal of Bioinformatics and Computational Biology, 2008, 06, 1035-1047.	0.8	8

#	Article	IF	Citations
127	SEARCH FOR FOLDING INITIATION SITES FROM AMINO ACID SEQUENCE. Journal of Bioinformatics and Computational Biology, 2008, 06, 681-691.	0.8	6
128	Prediction of Residue Status to Be Protected or Not Protected From Hydrogen Exchange Using Amino Acid Sequence Only. The Open Biochemistry Journal, 2008, 2, 77-80.	0.5	10
129	Different packing of external residues can explain differences in the thermostability of proteins from thermophilic and mesophilic organisms. Bioinformatics, 2007, 23, 2231-2238.	4.1	89
130	Understanding the Folding Rates and Folding Nuclei of Globular Proteins. Current Protein and Peptide Science, 2007, 8, 521-536.	1.4	18
131	Prediction of Number and Position of Domain Boundaries in Multi-Domain Proteins by Use of Amino Acid Sequence Alone. Current Protein and Peptide Science, 2007, 8, 189-195.	1.4	7
132	Expected packing density allows prediction of both amyloidogenic and disordered regions in protein chains. Journal of Physics Condensed Matter, 2007, 19, 285225.	1.8	6
133	FoldUnfold: web server for the prediction of disordered regions in protein chain. Bioinformatics, 2006, 22, 2948-2949.	4.1	148
134	Entropy capacity determines protein folding. Proteins: Structure, Function and Bioinformatics, 2006, 63, 144-154.	2.6	31
135	Prediction of Amyloidogenic and Disordered Regions in Protein Chains. PLoS Computational Biology, 2006, 2, e177.	3.2	155
136	IS IT POSSIBLE TO PREDICT AMYLOIDOGENIC REGIONS FROM SEQUENCE ALONE?. Journal of Bioinformatics and Computational Biology, 2006, 04, 373-388.	0.8	26
137	TREND OF AMINO ACID COMPOSITION OF PROTEINS OF DIFFERENT TAXA. Journal of Bioinformatics and Computational Biology, 2006, 04, 597-608.	0.8	82
138	Comparison of X-ray and NMR structures: Is there a systematic difference in residue contacts between X-ray- and NMR-resolved protein structures?. Proteins: Structure, Function and Bioinformatics, 2005, 60, 139-147.	2.6	78
139	General Dynamic Properties of AÂ12-36 Amyloid Peptide Involved in Alzheimer's Disease from Unfolding Simulation. Journal of Biochemistry, 2004, 136, 583-594.	1.7	8
140	Outlining Folding Nuclei in Globular Proteins. Journal of Molecular Biology, 2004, 336, 509-525.	4.2	57
141	?-Hairpins, ?-helices, and the intermediates among the secondary structures in the energy landscape of a peptide from a distal ?-hairpin of SH3 domain. Journal of Computational Chemistry, 2003, 24, 310-318.	3.3	30
142	Chain length is the main determinant of the folding rate for proteins with three-state folding kinetics. Proteins: Structure, Function and Bioinformatics, 2003, 51, 162-166.	2.6	140
143	Prediction of protein domain boundaries from sequence alone. Protein Science, 2003, 12, 696-701.	7.6	58
144	α-Helix and β-Hairpin Folding from Experiment, Analytical Theory and Molecular Dynamics Simulations. Current Protein and Peptide Science, 2002, 3, 191-200.	1.4	32

#	Article	IF	CITATIONS
145	Folding nuclei in proteins. FEBS Letters, 2001, 489, 113-118.	2.8	72
146	Energy landscape of a \hat{l}^2 -hairpin peptide in explicit water studied by multicanonical molecular dynamics. Chemical Physics Letters, 2001, 337, 169-175.	2.6	38
147	Î ² -hairpin folds by molecular dynamics simulations. Chemical Physics Letters, 2000, 326, 421-429.	2.6	16
148	Optimal region of average sideâ€chain entropy for fast protein folding. Protein Science, 2000, 9, 580-586.	7.6	29
149	Solution conformation of phakellistatin 8 investigated by molecular dynamics simulations. Journal of Molecular Graphics and Modelling, 1999, 17, 19-27.	2.4	14
150	Folding rate dependence on the chain length for RNA-like heteropolymers. Folding & Design, 1998, 3, 69-78.	4.5	12
151	Hyperphosphorylation induces structural modification of tau-protein. FEBS Letters, 1998, 439, 21-25.	2.8	30
152	Geometrical factor and physical reasons for its influence on the kinetic and thermodynamic properties of RNA-like heteropolymers. Folding & Design, 1997, 2, 193-201.	4.5	7
153	Roughness of the globular protein surface: Analysis of high resolution X-ray data. Proteins: Structure, Function and Bioinformatics, 1997, 28, 194-201.	2.6	10
154	Computer simulation of secondary structure folding of random and ''edited'' RNA chains. Journal of Chemical Physics, 1996, 105, 319-325.	3.0	8
155	Folding of chains with random and edited sequences: similarities and differences. Protein Engineering, Design and Selection, 1995, 8, 883-892.	2.1	29
156	Influence of Repeats in the Protein Chain on its Aggregation Capacity for ALS-Associated Proteins. , 0, ,		0