
## Mojtaba Falahati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4292365/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. Journal of Biomolecular Structure and Dynamics, 2021, 39, 3025-3033.                                                | 3.5  | 230       |
| 2  | Health Concerns of Various Nanoparticles: A Review of Their in Vitro and in Vivo Toxicity.<br>Nanomaterials, 2018, 8, 634.                                                                                                             | 4.1  | 210       |
| 3  | Plasmonic gold nanoparticles: Optical manipulation, imaging, drug delivery and therapy. Journal of<br>Controlled Release, 2019, 311-312, 170-189.                                                                                      | 9.9  | 195       |
| 4  | Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing. International Journal of Biological Macromolecules, 2020, 156, 153-170.                                                         | 7.5  | 171       |
| 5  | Cancer diagnosis using nanomaterials based electrochemical nanobiosensors. Biosensors and Bioelectronics, 2019, 126, 773-784.                                                                                                          | 10.1 | 146       |
| 6  | Interaction of single and multi wall carbon nanotubes with the biological systems: tau protein and PC12 cells as targets. Scientific Reports, 2016, 6, 26508.                                                                          | 3.3  | 111       |
| 7  | Gold nanoparticles fabrication by plant extracts: synthesis, characterization, degradation of<br>4-nitrophenol from industrial wastewater, and insecticidal activity – A review. Journal of Cleaner<br>Production, 2018, 184, 740-753. | 9.3  | 111       |
| 8  | Nanozymes with intrinsic peroxidase-like activities. Journal of Molecular Liquids, 2019, 278, 130-144.                                                                                                                                 | 4.9  | 110       |
| 9  | Enzyme immobilization onto the nanomaterials: Application in enzyme stability and prodrug-activated cancer therapy. International Journal of Biological Macromolecules, 2020, 143, 665-676.                                            | 7.5  | 89        |
| 10 | Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine.<br>Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129435.                                                              | 2.4  | 86        |
| 11 | Gold nanozyme: Biosensing and therapeutic activities. Materials Science and Engineering C, 2020, 108, 110422.                                                                                                                          | 7.3  | 83        |
| 12 | Thermodynamic and conformational changes of protein toward interaction with nanoparticles: a spectroscopic overview. RSC Advances, 2016, 6, 105903-105919.                                                                             | 3.6  | 79        |
| 13 | A health concern regarding the protein corona, aggregation and disaggregation. Biochimica Et<br>Biophysica Acta - General Subjects, 2019, 1863, 971-991.                                                                               | 2.4  | 71        |
| 14 | Investigating the Interaction of Fe Nanoparticles with Lysozyme by Biophysical and Molecular Docking Studies. PLoS ONE, 2016, 11, e0164878.                                                                                            | 2.5  | 70        |
| 15 | Targeting SARS-CoV2 Spike Protein Receptor Binding Domain by Therapeutic Antibodies. Biomedicine and Pharmacotherapy, 2020, 130, 110559.                                                                                               | 5.6  | 64        |
| 16 | Spectroscopic studies of interaction between CuO nanoparticles and bovine serum albumin. Journal of Biomolecular Structure and Dynamics, 2016, 34, 1962-1968.                                                                          | 3.5  | 54        |
| 17 | Aminopropyl-functionalized cubic Ia3d mesoporous silica nanoparticle as an efficient support for<br>immobilization of superoxide dismutase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011,<br>1814, 1195-1202.         | 2.3  | 53        |
| 18 | Plasmonic and chiroplasmonic nanobiosensors based on gold nanoparticles. Talanta, 2020, 212, 120782.                                                                                                                                   | 5.5  | 52        |

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Polymeric-based microneedle arrays as potential platforms in the development of drugs delivery systems. Journal of Advanced Research, 2020, 26, 137-147.                                                                                                 | 9.5 | 50        |
| 20 | Albumin binding and anticancer effect of magnesium oxide nanoparticles. International Journal of<br>Nanomedicine, 2019, Volume 14, 257-270.                                                                                                              | 6.7 | 49        |
| 21 | Nanozyme-based sensing platforms for detection of toxic mercury ions: An alternative approach to conventional methods. Talanta, 2020, 215, 120939.                                                                                                       | 5.5 | 48        |
| 22 | Involvement of planned cell death of necroptosis in cancer treatment by nanomaterials: Recent advances and future perspectives. Journal of Controlled Release, 2019, 299, 121-137.                                                                       | 9.9 | 47        |
| 23 | <p>Cerium oxide NPs mitigate the amyloid formation of α-synuclein and associated<br/>cytotoxicity</p> . International Journal of Nanomedicine, 2019, Volume 14, 6989-7000.                                                                               | 6.7 | 44        |
| 24 | Combined chemo-magneticÂfield-photothermal breast cancer therapy based on porous magnetite<br>nanospheres. Scientific Reports, 2020, 10, 5925.                                                                                                           | 3.3 | 44        |
| 25 | Development of point-of-care nanobiosensors for breast cancers diagnosis. Talanta, 2020, 217, 121091.                                                                                                                                                    | 5.5 | 40        |
| 26 | Antimetastatic Activity of Lactoferrin-Coated Mesoporous Maghemite Nanoparticles in Breast Cancer<br>Enabled by Combination Therapy. ACS Biomaterials Science and Engineering, 2020, 6, 3574-3584.                                                       | 5.2 | 39        |
| 27 | Investigating the Interaction of Silicon Dioxide Nanoparticles with Human Hemoglobin and<br>Lymphocyte Cells by Biophysical, Computational, and Cellular Studies. Journal of Physical Chemistry B,<br>2018, 122, 4278-4288.                              | 2.6 | 36        |
| 28 | Diagnostic and drug release systems based on microneedle arrays in breast cancer therapy. Journal of<br>Controlled Release, 2021, 338, 341-357.                                                                                                          | 9.9 | 36        |
| 29 | Novel therapeutic strategies for Alzheimer's disease: Implications from cell-based therapy and nanotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102149.                                                                       | 3.3 | 35        |
| 30 | Nitric oxide-releasing biomaterials for promoting wound healing in impaired diabetic wounds: State of the art and recent trends. Biomedicine and Pharmacotherapy, 2022, 149, 112707.                                                                     | 5.6 | 35        |
| 31 | Probing the conformational changes and peroxidase-like activity of cytochrome c upon interaction with iron nanoparticles. Journal of Biomolecular Structure and Dynamics, 2017, 35, 2565-2577.                                                           | 3.5 | 34        |
| 32 | <p>α-synuclein interaction with zero-valent iron nanoparticles accelerates structural<br/>rearrangement into amyloid-susceptible structure with increased cytotoxic tendency</p> .<br>International Journal of Nanomedicine, 2019, Volume 14, 4637-4648. | 6.7 | 33        |
| 33 | Magnetic nanocatalysts as multifunctional platforms in cancer therapy through the synthesis of anticancer drugs and facilitated Fenton reaction. Journal of Advanced Research, 2021, 30, 171-184.                                                        | 9.5 | 33        |
| 34 | Studies on the interaction between nanodiamond and human hemoglobin by surface tension<br>measurement and spectroscopy methods. Journal of Biomolecular Structure and Dynamics, 2017, 35,<br>603-615.                                                    | 3.5 | 32        |
| 35 | Albumin binding, anticancer and antibacterial properties of synthesized zero valent iron nanoparticles. International Journal of Nanomedicine, 2019, Volume 14, 243-256.                                                                                 | 6.7 | 32        |
| 36 | An Updated Review on EPR-Based Solid Tumor Targeting Nanocarriers for Cancer Treatment. Cancers, 2022. 14. 2868.                                                                                                                                         | 3.7 | 32        |

| #  | Article                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Exosomes: Multiple-targeted multifunctional biological nanoparticles in the diagnosis, drug delivery, and imaging of cancer cells. Biomedicine and Pharmacotherapy, 2020, 129, 110442.                                                                                         | 5.6 | 31        |
| 38 | Gold Nanoparticle-Based Platforms for Diagnosis and Treatment of Myocardial Infarction. ACS<br>Biomaterials Science and Engineering, 2020, 6, 6460-6477.                                                                                                                       | 5.2 | 30        |
| 39 | Development of remdesivir repositioning as a nucleotide analog against COVID-19 RNA dependent RNA polymerase. Journal of Biomolecular Structure and Dynamics, 2021, 39, 3771-3779.                                                                                             | 3.5 | 30        |
| 40 | Interaction of iron nanoparticles with nervous system: an <i>in vitro</i> study. Journal of<br>Biomolecular Structure and Dynamics, 2018, 36, 928-937.                                                                                                                         | 3.5 | 29        |
| 41 | The effect of functionalization of mesoporous silica nanoparticles on the interaction and stability of confined enzyme. International Journal of Biological Macromolecules, 2012, 50, 1048-1054.                                                                               | 7.5 | 27        |
| 42 | In vivo guiding inorganic nanozymes for biosensing and therapeutic potential in cancer, inflammation and microbial infections. Talanta, 2021, 224, 121805.                                                                                                                     | 5.5 | 27        |
| 43 | The expression level of angiotensin-converting enzyme 2 determines the severity of COVID-19: lung and heart tissue as targets. Journal of Biomolecular Structure and Dynamics, 2021, 39, 3780-3786.                                                                            | 3.5 | 26        |
| 44 | Rapid diagnostics of coronavirus disease 2019 in early stages using nanobiosensors: Challenges and opportunities. Talanta, 2021, 223, 121704.                                                                                                                                  | 5.5 | 26        |
| 45 | Enzyme–polymeric/inorganic metal oxide/hybrid nanoparticle bio-conjugates in the development of therapeutic and biosensing platforms. Journal of Advanced Research, 2021, 33, 227-239.                                                                                         | 9.5 | 25        |
| 46 | Probing the interaction of silver nanoparticles with tau protein and neuroblastoma cell line as nervous system models. Journal of Biomolecular Structure and Dynamics, 2018, 36, 4057-4071.                                                                                    | 3.5 | 25        |
| 47 | A review of the berberine natural polysaccharide nanostructures as potential anticancer and antibacterial agents. Biomedicine and Pharmacotherapy, 2022, 146, 112531.                                                                                                          | 5.6 | 25        |
| 48 | Aluminium oxide nanoparticles induce structural changes in tau and cytotoxicity of the<br>neuroblastoma cell line. International Journal of Biological Macromolecules, 2018, 120, 1140-1148.                                                                                   | 7.5 | 24        |
| 49 | <p>Exploring the Interaction of Cobalt Oxide Nanoparticles with Albumin, Leukemia Cancer Cells<br/>and Pathogenic Bacterial by Multispectroscopic, Docking, Cellular and Antibacterial<br/>Approaches</p> . International Journal of Nanomedicine, 2020, Volume 15, 4607-4623. | 6.7 | 24        |
| 50 | 3D bioprinting of engineered breast cancer constructs for personalized and targeted cancer therapy.<br>Journal of Controlled Release, 2021, 333, 91-106.                                                                                                                       | 9.9 | 24        |
| 51 | Fabrication and evaluation of anti-cancer efficacy of lactoferrin-coated maghemite and magnetite nanoparticles. Journal of Biomolecular Structure and Dynamics, 2020, 38, 2945-2954.                                                                                           | 3.5 | 23        |
| 52 | Highly efficient immobilization of beta-lactoglobulin in functionalized mesoporous nanoparticles: A<br>simple and useful approach for enhancement of protein stability. Biophysical Chemistry, 2012, 165-166,<br>13-20.                                                        | 2.8 | 22        |
| 53 | A spectroscopic study on the absorption of carbonic anhydrase onto the nanoporous silica nanoparticle. International Journal of Biological Macromolecules, 2017, 99, 739-745.                                                                                                  | 7.5 | 22        |
| 54 | <p>Amorphous aggregation of tau in the presence of titanium dioxide nanoparticles: biophysical,<br/>computational, and cellular studies</p> . International Journal of Nanomedicine, 2019, Volume 14,<br>901-911.                                                              | 6.7 | 22        |

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Probing the interaction of zero valent iron nanoparticles with blood system by biophysical, docking, cellular, and molecular studies. International Journal of Biological Macromolecules, 2018, 109, 639-650.                                           | 7.5 | 21        |
| 56 | ROS-mediated heme degradation and cytotoxicity induced by iron nanoparticles: hemoglobin and lymphocyte cells as targets. Journal of Biomolecular Structure and Dynamics, 2018, 36, 4235-4245.                                                          | 3.5 | 21        |
| 57 | Biophysical, bioinformatical, cellular, and molecular investigations on the effects of graphene oxide<br>nanosheets on the hemoglobin structure and lymphocyte cell cytotoxicity. International Journal of<br>Nanomedicine, 2018, Volume 13, 6871-6884. | 6.7 | 21        |
| 58 | Albumin binding, antioxidant and antibacterial effects of cerium oxide nanoparticles. Journal of<br>Molecular Liquids, 2019, 296, 111839.                                                                                                               | 4.9 | 21        |
| 59 | Strategies of enzyme immobilization on nanomatrix supports and their intracellular delivery. Journal of Biomolecular Structure and Dynamics, 2020, 38, 2746-2762.                                                                                       | 3.5 | 21        |
| 60 | Interaction of manganese nanoparticle with cytochrome c: A multi-spectroscopic study. International<br>Journal of Biological Macromolecules, 2018, 106, 78-86.                                                                                          | 7.5 | 20        |
| 61 | A review on the interaction of nucleoside analogues with SARS-CoV-2 RNA dependent RNA polymerase.<br>International Journal of Biological Macromolecules, 2021, 181, 605-611.                                                                            | 7.5 | 20        |
| 62 | Explaining chemical clues of metal organic framework-nanozyme nano-/micro-motors in targeted treatment of cancers: benchmarks and challenges. Journal of Nanobiotechnology, 2022, 20, 153.                                                              | 9.1 | 20        |
| 63 | <i>cis</i> pT231-Tau Drives Neurodegeneration in Bipolar Disorder. ACS Chemical Neuroscience, 2019, 10, 1214-1221.                                                                                                                                      | 3.5 | 19        |
| 64 | Silymarin-albumin nanoplex: Preparation and its potential application as an antioxidant in nervous system in vitro and in vivo. International Journal of Pharmaceutics, 2019, 572, 118824.                                                              | 5.2 | 18        |
| 65 | Titanium oxide nanoparticles fabrication, hemoglobin interaction, white blood cells cytotoxicity, and antibacterial studies. Journal of Biomolecular Structure and Dynamics, 2019, 37, 3007-3017.                                                       | 3.5 | 17        |
| 66 | Silica nanoparticles induce conformational changes of tau protein and oxidative stress and apoptosis<br>in neuroblastoma cell line. International Journal of Biological Macromolecules, 2019, 124, 1312-1320.                                           | 7.5 | 17        |
| 67 | Advances of exosome isolation techniques in lung cancer. Molecular Biology Reports, 2020, 47, 7229-7251.                                                                                                                                                | 2.3 | 17        |
| 68 | Interaction of silica nanoparticles with tau proteins and PC12 cells: Colloidal stability,<br>thermodynamic, docking, and cellular studies. International Journal of Biological Macromolecules,<br>2018, 118, 1963-1973.                                | 7.5 | 16        |
| 69 | The effects of nickel oxide nanoparticles on tau protein and neuron-like cells: Biothermodynamics and molecular studies. International Journal of Biological Macromolecules, 2019, 127, 330-339.                                                        | 7.5 | 16        |
| 70 | Exploring the interaction of synthesized nickel oxide nanoparticles through hydrothermal method<br>with hemoglobin and lymphocytes: Bio-thermodynamic and cellular studies. Journal of Molecular<br>Liquids, 2020, 317, 113893.                         | 4.9 | 16        |
| 71 | Silybin as a potent inhibitor of a-synuclein aggregation and associated cytotoxicity against<br>neuroblastoma cells induced by zinc oxide nanoparticles. Journal of Molecular Liquids, 2020, 310,<br>113198.                                            | 4.9 | 16        |
| 72 | Thermodynamic and anticancer properties of inorganic zinc oxide nanoparticles synthesized through co-precipitation method. Journal of Molecular Liquids, 2021, 330, 115602.                                                                             | 4.9 | 16        |

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Criteria, Challenges, and Opportunities for Acellularized Allogeneic/Xenogeneic Bone Grafts in Bone<br>Repairing. ACS Biomaterials Science and Engineering, 2022, 8, 3199-3219.                                                                       | 5.2 | 16        |
| 74 | Human hemoglobin adsorption onto colloidal cerium oxide nanoparticles: a new model based on zeta<br>potential and spectroscopy measurements. Journal of Biomolecular Structure and Dynamics, 2018, 36,<br>2908-2916.                                  | 3.5 | 15        |
| 75 | Heme degradation and iron release of hemoglobin and oxidative stress of lymphocyte cells in the<br>presence of silica nanoparticles. International Journal of Biological Macromolecules, 2018, 118,<br>800-807.                                       | 7.5 | 15        |
| 76 | Biophysical, molecular dynamics and cellular studies on the interaction of nickel oxide nanoparticles<br>with tau proteins and neuron-like cells. International Journal of Biological Macromolecules, 2019,<br>125, 778-784.                          | 7.5 | 15        |
| 77 | Biophysical, docking, and cellular studies on the effects of cerium oxide nanoparticles on blood components: in vitro. International Journal of Nanomedicine, 2018, Volume 13, 4575-4589.                                                             | 6.7 | 14        |
| 78 | The effect of aluminum oxide on red blood cell integrity and hemoglobin structure at nanoscale.<br>International Journal of Biological Macromolecules, 2019, 138, 800-809.                                                                            | 7.5 | 14        |
| 79 | Nanoporous iron oxide nanoparticle: hydrothermal fabrication, human serum albumin interaction<br>and potential antibacterial effects. Journal of Biomolecular Structure and Dynamics, 2021, 39,<br>2595-2606.                                         | 3.5 | 14        |
| 80 | Molecular mechanisms of thyroid cancer: A competing endogenous RNA (ceRNA) point of view.<br>Biomedicine and Pharmacotherapy, 2022, 146, 112251.                                                                                                      | 5.6 | 14        |
| 81 | Acceleration of α-synuclein fibril formation and associated cytotoxicity stimulated by silica nanoparticles as a model of neurodegenerative diseases. International Journal of Biological Macromolecules, 2021, 169, 532-540.                         | 7.5 | 13        |
| 82 | Cobalt oxide nanoparticles mediate tau denaturation and cytotoxicity against PC-12 cell line.<br>International Journal of Biological Macromolecules, 2018, 118, 1763-1772.                                                                            | 7.5 | 12        |
| 83 | Reactive oxygen species generated by titanium oxide nanoparticles stimulate the hemoglobin<br>denaturation and cytotoxicity against human lymphocyte cell. Journal of Biomolecular Structure and<br>Dynamics, 2019, 37, 4875-4881.                    | 3.5 | 12        |
| 84 | Tau folding and cytotoxicity of neuroblastoma cells in the presence of manganese oxide<br>nanoparticles: Biophysical, molecular dynamics, cellular, and molecular studies. International<br>Journal of Biological Macromolecules, 2019, 125, 674-682. | 7.5 | 12        |
| 85 | 5-Fluorouracil-containing inorganic iron oxide/platinum nanozymes with dual drug delivery and enzyme-like activity for the treatment of breast cancer. Arabian Journal of Chemistry, 2022, 15, 103966.                                                | 4.9 | 12        |
| 86 | <p>Vitamin K1 As A Potential Molecule For Reducing Single-Walled Carbon Nanotubes-Stimulated<br/>α-Synuclein Structural Changes And Cytotoxicity</p> . International Journal of Nanomedicine,<br>2019, Volume 14, 8433-8444.                          | 6.7 | 11        |
| 87 | The effects of nickel oxide nanoparticles on structural changes, heme degradation, aggregation of hemoglobin and expression of apoptotic genes in lymphocytes. Journal of Biomolecular Structure and Dynamics, 2020, 38, 3676-3686.                   | 3.5 | 10        |
| 88 | Biothermodynamic, antiproliferative and antimicrobial properties of synthesized copper oxide nanoparticles. Journal of Molecular Liquids, 2021, 324, 114693.                                                                                          | 4.9 | 9         |
| 89 | Hydrothermal method-based synthesized tin oxide nanoparticles: Albumin binding and antiproliferative activity against K562 cells. Materials Science and Engineering C, 2021, 119, 111649.                                                             | 7.3 | 9         |
| 90 | Evaluation of heptelidic acid as a potential inhibitor for tau aggregation-induced Alzheimer's disease<br>and associated neurotoxicity. International Journal of Biological Macromolecules, 2021, 183, 1155-1161.                                     | 7.5 | 7         |

| #   | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Copper oxide nanoparticles promote amyloid-β-triggered neurotoxicity through formation of oligomeric species as a prelude to Alzheimer's diseases. International Journal of Biological Macromolecules, 2022, 207, 121-129.                  | 7.5 | 7         |
| 92  | Combined Spectroscopic and Calorimetric Studies to Reveal Absorption Mechanisms and<br>Conformational Changes of Protein on Nanoporous Biomaterials. International Journal of Molecular<br>Sciences, 2015, 16, 17289-17302.                 | 4.1 | 6         |
| 93  | <p>The interaction of silica nanoparticles with catalase and human mesenchymal stem cells:<br/>biophysical, theoretical and cellular studies</p> . International Journal of Nanomedicine, 2019,<br>Volume 14, 5355-5368.                    | 6.7 | 6         |
| 94  | Tin oxide nanoparticles trigger the formation of amyloid β oligomers/protofibrils and underlying<br>neurotoxicity as a marker of Alzheimer's diseases. International Journal of Biological<br>Macromolecules, 2022, 204, 154-160.           | 7.5 | 6         |
| 95  | Irreversible thermal inactivation and conformational lock of alpha glucosidase. Journal of<br>Biomolecular Structure and Dynamics, 2021, 39, 1-7.                                                                                           | 3.5 | 5         |
| 96  | Fabrication of inorganic alumina particles at nanoscale by a pulsed laser ablation technique in liquid<br>and exploring their protein binding, anticancer and antipathogenic activities. Arabian Journal of<br>Chemistry, 2021, 14, 102923. | 4.9 | 5         |
| 97  | Immobilization of superoxide dismutase onto ordered mesoporous silica nanoparticles and improvement of its stability. Journal of the Iranian Chemical Society, 2012, 9, 157-161.                                                            | 2.2 | 4         |
| 98  | Exploring the interaction of quercetin-3-O-sophoroside with SARS-CoV-2 main proteins by theoretical studies: A probable prelude to control some variants of coronavirus including Delta. Arabian Journal of Chemistry, 2021, 14, 103353.    | 4.9 | 4         |
| 99  | Human tau fibrillization and neurotoxicity in the presence of magnesium oxide nanoparticle<br>fabricated through laser ablation method. Spectrochimica Acta - Part A: Molecular and Biomolecular<br>Spectroscopy, 2022, 278, 121372.        | 3.9 | 3         |
| 100 | A bio-mimetic zinc/tau protein as an artificial catalase. International Journal of Biological<br>Macromolecules, 2016, 92, 1307-1312.                                                                                                       | 7.5 | 1         |