Zhan-Fen Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4292228/publications.pdf

Version: 2024-02-01

		394286	345118
58	1,426 citations	19	36
papers	citations	h-index	g-index
59	59	59	1532
39	39	39	1332
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Bisphenol A alternatives bisphenol S and bisphenol F interfere with thyroid hormone signaling pathway inÂvitro and inÂvivo. Environmental Pollution, 2018, 237, 1072-1079.	3.7	132
2	Discovery of a Novel Polyfluoroalkyl Benzenesulfonic Acid around Oilfields in Northern China. Environmental Science & Environm	4.6	86
3	Structure–activity relations in binding of perfluoroalkyl compounds to human thyroid hormone T3 receptor. Archives of Toxicology, 2015, 89, 233-242.	1.9	80
4	Dual body burdens of polychlorinated biphenyls and polybrominated diphenyl ethers among local residents in an e-waste recycling region in Southeast China. Chemosphere, 2010, 78, 659-666.	4.2	77
5	Diffusion of polybrominated diphenyl ether (PBDE) from an e-waste recycling area to the surrounding regions in Southeast China. Chemosphere, 2009, 76, 1470-1476.	4.2	73
6	TBBPA and Its Alternatives Disturb the Early Stages of Neural Development by Interfering with the NOTCH and WNT Pathways. Environmental Science & Envi	4.6	70
7	Polybrominated Diphenyl Ethers (PBDEs) in Aborted Human Fetuses and Placental Transfer during the First Trimester of Pregnancy. Environmental Science & Emp; Technology, 2013, 47, 5939-5946.	4.6	69
8	Effects of perfluorooctanesulfonate and perfluorobutanesulfonate on the growth and sexual development of Xenopus laevis. Ecotoxicology, 2013, 22, 1133-1144.	1.1	69
9	Effects of Chinese domestic polychlorinated biphenyls (PCBs) on gonadal differentiation in Xenopus laevis Environmental Health Perspectives, $2003, 111, 553-556$.	2.8	61
10	Tetrabromobisphenol A Disrupts Vertebrate Development via Thyroid Hormone Signaling Pathway in a Developmental Stage-Dependent Manner. Environmental Science & 2014, 148, 8227-8234.	4.6	49
11	Assessment of Bisphenol A (BPA) neurotoxicity in vitro with mouse embryonic stem cells. Journal of Environmental Sciences, 2015, 36, 181-187.	3.2	45
12	LEVELS AND DISTRIBUTION OF POLYBROMINATED DIPHENYL ETHERS IN VARIOUS TISSUES OF FORAGING HENS FROM AN ELECTRONIC WASTE RECYCLING AREA IN SOUTH CHINA. Environmental Toxicology and Chemistry, 2008, 27, 1279.	2.2	40
13	Determination of polybrominated diphenyl ethers in human semen. Environment International, 2012, 42, 132-137.	4.8	36
14	Bisphenol F Disrupts Thyroid Hormone Signaling and Postembryonic Development in <i>Xenopus laevis</i> . Environmental Science &	4.6	36
15	Polybrominated diphenyl ethers in chicken tissues and eggs from an electronic waste recycling area in southeast China. Journal of Environmental Sciences, 2011, 23, 133-138.	3.2	33
16	Bioaccumulation, maternal transfer and elimination of polybrominated diphenyl ethers in wild frogs. Chemosphere, 2011, 84, 972-978.	4.2	30
17	Accumulation of polybrominated diphenyl ethers in the brain compared with the levels in other tissues among different vertebrates from an e-waste recycling site. Environmental Pollution, 2016, 218, 1334-1341.	3.7	27
18	Low concentrations of $17\hat{1}^2$ -trenbolone induce female-to-male reversal and mortality in the frog Pelophylax nigromaculatus. Aquatic Toxicology, 2015, 158, 230-237.	1.9	26

#	Article	IF	Citations
19	Feminizing/demasculinizing effects of polychlorinated biphenyls on the secondary sexual development of Xenopus laevis. Aquatic Toxicology, 2007, 84, 321-327.	1.9	20
20	Determination of environmentally relevant exposure concentrations of polybrominated diphenyl ethers for in vitro toxicological studies. Toxicology in Vitro, 2010, 24, 1078-1085.	1.1	19
21	Tetrabromoethylcyclohexane affects gonadal differentiation and development in the frog Pelophylax nigromaculatus. Aquatic Toxicology, 2017, 192, 40-47.	1.9	17
22	Re-evaluation of thyroid hormone signaling antagonism of tetrabromobisphenol A for validating the T3-induced Xenopus metamorphosis assay. Journal of Environmental Sciences, 2017, 52, 325-332.	3.2	17
23	Thyroid disruption by technical decabromodiphenyl ether (DE-83R) at low concentrations in Xenopus laevis. Journal of Environmental Sciences, 2010, 22, 744-751.	3.2	16
24	Polybrominated diphenyl ether (PBDE) in blood from children (age 9–12) in Taizhou, China. Journal of Environmental Sciences, 2011, 23, 1199-1204.	3.2	16
25	Molecular characterization and mRNA expression of ribosomal protein L8 in Rana nigromaculata during development and under exposure to hormones. Journal of Environmental Sciences, 2014, 26, 2331-2339.	3.2	15
26	A screening assay for thyroid hormone signaling disruption based on thyroid hormone-response gene expression analysis in the frog Pelophylax nigromaculatus. Journal of Environmental Sciences, 2015, 34, 143-154.	3.2	15
27	Determining the optimal developmental stages of Xenopus laevis for initiating exposures to chemicals for sensitively detecting their feminizing effects on gonadal differentiation. Aquatic Toxicology, 2016, 179, 134-142.	1.9	14
28	Optimization of the T3-induced Xenopus metamorphosis assay for detecting thyroid hormone signaling disruption of chemicals. Journal of Environmental Sciences, 2017, 52, 314-324.	3.2	14
29	Evaluation of the effects of low concentrations of bisphenol AF on gonadal development using the Xenopus laevis model: A finding of testicular differentiation inhibition coupled with feminization. Environmental Pollution, 2020, 260, 113980.	3.7	14
30	Effects of bisphenol A and its alternative bisphenol F on Notch signaling and intestinal development: A novel signaling by which bisphenols disrupt vertebrate development. Environmental Pollution, 2020, 263, 114443.	3.7	14
31	Bioaccumulation and transfer characteristics of dechlorane plus in human adipose tissue and blood stream and the underlying mechanisms. Science of the Total Environment, 2020, 700, 134391.	3.9	13
32	POTENTIAL ECOTOXIC EFFECTS OF POLYCHLORINATED BIPHENYLS ON XENOPUS LAEVIS. Environmental Toxicology and Chemistry, 2005, 24, 2573.	2.2	12
33	Molecular characterization and developmental expression patterns of thyroid hormone receptors (TRs) and their responsiveness to TR agonist and antagonist in Rana nigromaculata. Journal of Environmental Sciences, 2014, 26, 2084-2094.	3.2	12
34	Transfer of dechlorane plus between human breast milk and adipose tissue and comparison with legacy lipophilic compounds. Environmental Pollution, 2020, 265, 115096.	3.7	12
35	Low concentrations of dihydrotestosterone induce femaleâ€toâ€male sex reversal in the frog <i>Pelophylax nigromaculatus</i> . Environmental Toxicology and Chemistry, 2015, 34, 2370-2377.	2.2	11
36	Bisphenols disrupt thyroid hormone (TH) signaling in the brain and affect TH-dependent brain development in Xenopus laevis. Aquatic Toxicology, 2021, 237, 105902.	1.9	11

#	Article	IF	CITATIONS
37	Tetrabromobisphenol A: a neurotoxicant or not?. Environmental Science and Pollution Research, 2021, 28, 54466-54476.	2.7	11
38	Zebrafish larvae acute toxicity test: A promising alternative to the fish acute toxicity test. Aquatic Toxicology, 2022, 246, 106143.	1.9	11
39	Effects of postnatal exposure to tetrabromobisphenol A on testis development in mice and early key events. Archives of Toxicology, 2022, 96, 1881-1892.	1.9	10
40	Changes of polybrominated diphenyl ether concentrations in ducks with background exposure level and time. Chemosphere, 2015, 118, 253-260.	4.2	9
41	Effects of triclosan on gonadal differentiation and development in the frog Pelophylax nigromaculatus. Journal of Environmental Sciences, 2018, 64, 157-165.	3.2	9
42	Transcriptomic analysis identifies early cellular and molecular events by which estrogen disrupts testis differentiation and causes feminization in Xenopus laevis. Aquatic Toxicology, 2020, 226, 105557.	1.9	9
43	2,2',4,4'-tetrabromodipheny ether (BDE-47) disrupts gonadal development of the Africa clawed frog (Xenopus laevis). Aquatic Toxicology, 2020, 221, 105441.	1.9	7
44	Low Concentrations of Tetrabromobisphenol A Disrupt Notch Signaling and Intestinal Development in <i>in Vitro</i> and <i>in Vivo</i> Models. Chemical Research in Toxicology, 2020, 33, 1418-1427.	1.7	7
45	Transcriptional changes caused by estrogenic endocrine disrupting chemicals in gonad-mesonephros complexes of genetic male Xenopus laevis: Multiple biomarkers for early detection of testis differentiation disruption. Science of the Total Environment, 2020, 726, 138522.	3.9	7
46	Bisphenol chemicals disturb intestinal homeostasis via Notch/Wnt signaling and induce mucosal barrier dysregulation and inflammation. Science of the Total Environment, 2022, 828, 154444.	3.9	7
47	Application of Xenopus laevis in ecotoxicology (I) —Introduction and quality control of laboratory animal. Science Bulletin, 2006, 51, 1273-1280.	1.7	5
48	An ex vivo assay for screening glucocorticoid signaling disruption based on glucocorticoid-response gene transcription in Xenopus tails. Journal of Environmental Sciences, 2018, 66, 104-112.	3.2	5
49	Measurement of polychlorinated biphenyls with hand wipes and matched serum collected from Chinese E-waste dismantling workers: Exposure estimates and implications. Science of the Total Environment, 2021, 799, 149444.	3.9	5
50	Identification of estrogen receptor target genes involved in gonadal feminization caused by estrogen in Xenopus laevis. Aquatic Toxicology, 2021, 232, 105760.	1.9	4
51	Environmental (anti-)androgenic chemicals affect germinal vesicle breakdown (GVBD) of Xenopus laevis oocytes in vitro. Toxicology in Vitro, 2014, 28, 426-431.	1.1	3
52	Development of Testis Cords and the Formation of Efferent Ducts in <i>Xenopus laevis</i> : Differences and Similarities with Other Vertebrates. Sexual Development, 2020, 14, 66-79.	1.1	3
53	A Multiwell-Based Assay for Screening Thyroid Hormone Signaling Disruptors Using thibz Expression as a Sensitive Endpoint in Xenopus laevis. Molecules, 2022, 27, 798.	1.7	3
54	Tetrabromobisphenol A Disturbs Brain Development in Both Thyroid Hormone-Dependent and -Independent Manners in Xenopus laevis. Molecules, 2022, 27, 249.	1.7	3

#	Article	IF	CITATION
55	Accumulation of Polybrominated Diphenyl Ethers (PBDEs) in Mudsnails (Cipangopaludina cahayensis) Did Not Increase with Age. Bulletin of Environmental Contamination and Toxicology, 2013, 91, 1-5.	1.3	2
56	Bisphenol B disrupts testis differentiation partly via the estrogen receptor-mediated pathway and subsequently causes testicular dysgenesis in Xenopus laevis. Ecotoxicology and Environmental Safety, 2022, 236, 113453.	2.9	2
57	Gonadal differentiation and its sensitivity to androgens during development of Pelophylax nigromaculatus. Aquatic Toxicology, 2018, 202, 188-195.	1.9	1
58	Comparison of Dechlorane Plus Concentrations in Sequential Blood Samples of Pregnant Women in Taizhou, China. Molecules, 2022, 27, 2242.	1.7	1