
David M A Mann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4292199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrastructural and biochemical classification of pathogenic tau, α-synuclein and TDP-43. Acta Neuropathologica, 2022, 143, 613-640.	7.7	22
2	Mid to lateâ€life scores of depression in the cognitively healthy are associated with cognitive status and Alzheimer's disease pathology at death. International Journal of Geriatric Psychiatry, 2021, 36, 713-721.	2.7	10
3	Amyloid-PET–Positive Patient With bvFTD. Neurology: Clinical Practice, 2021, 11, e952-e955.	1.6	4
4	Human tauopathy-derived tau strains determine the substrates recruited for templated amplification. Brain, 2021, 144, 2333-2348.	7.6	17
5	Early changes in visuospatial episodic memory can help distinguish primary ageâ€related tauopathy from Alzheimer's disease. Neuropathology and Applied Neurobiology, 2021, 47, 1114-1116.	3.2	6
6	Telephone Interview for Cognitive Status Scores Associate with Cognitive Impairment and Alzheimer's Disease Pathology at Death. Journal of Alzheimer's Disease, 2021, 84, 609-619.	2.6	4
7	A Comparative Study of Pathological Outcomes in The University of Manchester Longitudinal Study of Cognition in Normal Healthy Old Age and Brains for Dementia Research Cohorts. Journal of Alzheimer's Disease, 2020, 73, 619-632.	2.6	6
8	The Contribution of Vascular Pathology Toward Cognitive Impairment in Older Individuals with Intermediate Braak Stage Tau Pathology. Journal of Alzheimer's Disease, 2020, 77, 1005-1015.	2.6	5
9	Influence of APOE Genotype on Mortality and Cognitive Impairment. Journal of Alzheimer's Disease Reports, 2020, 4, 281-286.	2.2	8
10	Comparison of Common and Disease-Specific Post-translational Modifications of Pathological Tau Associated With a Wide Range of Tauopathies. Frontiers in Neuroscience, 2020, 14, 581936.	2.8	47
11	Influence of APOE genotype in primary age-related tauopathy. Acta Neuropathologica Communications, 2020, 8, 215.	5.2	13
12	Evaluation of ¹⁸ F-IAM6067 as a sigma-1 receptor PET tracer for neurodegeneration <i>in vivo</i> in rodents and in human tissue. Theranostics, 2020, 10, 7938-7955.	10.0	7
13	Symmetric dimethylation of poly-GR correlates with disease duration in C9orf72 FTLD and ALS and reduces poly-GR phase separation and toxicity. Acta Neuropathologica, 2020, 139, 407-410.	7.7	36
14	Fulminant corticobasal degeneration: a distinct variant with predominant neuronal tau aggregates. Acta Neuropathologica, 2020, 139, 717-734.	7.7	15
15	Analysis of neurodegenerative disease-causing genes in dementia with Lewy bodies. Acta Neuropathologica Communications, 2020, 8, 5.	5.2	27
16	The role of lysosomes and autophagosomes in frontotemporal lobar degeneration. Neuropathology and Applied Neurobiology, 2019, 45, 244-261.	3.2	20
17	Association between semantic dementia and progressive supranuclear palsy. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 115-117.	1.9	6
18	No association between head injury with loss of consciousness and Alzheimer disease pathology—Findings from the University of Manchester Longitudinal Study of Cognition in Normal Healthy Old Age. International Journal of Geriatric Psychiatry, 2019, 34, 1262-1266.	2.7	4

#	Article	IF	CITATIONS
19	Heritability and genetic variance of dementia with Lewy bodies. Neurobiology of Disease, 2019, 127, 492-501.	4.4	29
20	Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. Acta Neuropathologica, 2019, 137, 879-899.	7.7	90
21	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	21.4	1,962
22	A comprehensive screening of copy number variability in dementia with Lewy bodies. Neurobiology of Aging, 2019, 75, 223.e1-223.e10.	3.1	13
23	Scores Obtained from a Simple Cognitive Test of Visuospatial Episodic Memory Performed Decades before Death Are Associated with the Ultimate Presence of Alzheimer Disease Pathology. Dementia and Geriatric Cognitive Disorders, 2018, 45, 79-90.	1.5	9
24	Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurology, The, 2018, 17, 548-558.	10.2	97
25	Polygenic risk score in postmortem diagnosed sporadic early-onset Alzheimer's disease. Neurobiology of Aging, 2018, 62, 244.e1-244.e8.	3.1	30
26	Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurology, The, 2018, 17, 64-74.	10.2	195
27	Dysregulation of C-X-C motif ligand 10 during aging and association with cognitive performance. Neurobiology of Aging, 2018, 63, 54-64.	3.1	47
28	Immunohistochemical detection of C9orf72 protein in frontotemporal lobar degeneration and motor neurone disease: patterns of immunostaining and an evaluation of commercial antibodies. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 102-111.	1.7	10
29	Prevalence of amyloidâ€Î² pathology in distinct variants of primary progressive aphasia. Annals of Neurology, 2018, 84, 729-740.	5.3	132
30	Patterns and severity of vascular amyloid in Alzheimer's disease associated with duplications and missense mutations in APP gene, Down syndrome and sporadic Alzheimer's disease. Acta Neuropathologica, 2018, 136, 569-587.	7.7	47
31	Lysosomes, autophagosomes and Alzheimer pathology in dementia with Lewy body disease. Neuropathology, 2018, 38, 347-360.	1.2	5
32	The age of onset and evolution of Braak tangle stage and Thal amyloid pathology of Alzheimer's disease in individuals with Down syndrome. Acta Neuropathologica Communications, 2018, 6, 56.	5.2	76
33	Raman Spectroscopy to Diagnose Alzheimer's Disease and Dementia with Lewy Bodies in Blood. ACS Chemical Neuroscience, 2018, 9, 2786-2794.	3.5	62
34	Pathological Correlates of Cognitive Impairment in The University of Manchester Longitudinal Study of Cognition in Normal Healthy Old Age. Journal of Alzheimer's Disease, 2018, 64, 483-496.	2.6	22
35	Early changes in extracellular matrix in Alzheimer's disease. Neuropathology and Applied Neurobiology, 2017, 43, 167-182.	3.2	139
36	Frontotemporal lobar degeneration: Pathogenesis, pathology and pathways to phenotype. Brain Pathology, 2017, 27, 723-736.	4.1	112

#	Article	IF	CITATIONS
37	Semantic dementia, progressive non-fluent aphasia and their association with amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 711-712.	1.9	25
38	Reply: Atherosclerosis and vascular cognitive impairment neuropathological guideline. Brain, 2017, 140, e13-e13.	7.6	2
39	Differential diagnosis of Alzheimer's disease using spectrochemical analysis of blood. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7929-E7938.	7.1	125
40	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	21.4	783
41	Heterogeneous ribonuclear protein E2 (hnRNP E2) is associated with TDP-43-immunoreactive neurites in Semantic Dementia but not with other TDP-43 pathological subtypes of Frontotemporal Lobar Degeneration. Acta Neuropathologica Communications, 2017, 5, 54.	5.2	15
42	Heterogeneous ribonuclear protein A3 (hnRNP A3) is present in dipeptide repeat protein containing inclusions in Frontotemporal Lobar Degeneration and Motor Neurone disease associated with expansions in C9orf72 gene. Acta Neuropathologica Communications, 2017, 5, 31.	5.2	20
43	Analysis of C9orf72 repeat expansions in a large international cohort of dementia with Lewy bodies. Neurobiology of Aging, 2017, 49, 214.e13-214.e15.	3.1	12
44	Pathological tau deposition in Motor Neurone Disease and frontotemporal lobar degeneration associated with TDP-43 proteinopathy. Acta Neuropathologica Communications, 2016, 4, 33.	5.2	33
45	Vascular cognitive impairment neuropathology guidelines (VCING): the contribution of cerebrovascular pathology to cognitive impairment. Brain, 2016, 139, 2957-2969.	7.6	220
46	Magnetite pollution nanoparticles in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10797-10801.	7.1	746
47	Extended post-mortem delay times should not be viewed as a deterrent to the scientific investigation of human brain tissue: a study from the Brains for Dementia Research Network Neuropathology Study Group, UK. Acta Neuropathologica, 2016, 132, 753-755.	7.7	18
48	Co-Occurrence of Language and Behavioural Change in Frontotemporal Lobar Degeneration. Dementia and Geriatric Cognitive Disorders Extra, 2016, 6, 205-213.	1.3	45
49	Biochemical classification of tauopathies by immunoblot, protein sequence and mass spectrometric analyses of sarkosyl-insoluble and trypsin-resistant tau. Acta Neuropathologica, 2016, 131, 267-280.	7.7	167
50	ADAM30 Downregulates APP-Linked Defects Through Cathepsin D Activation in Alzheimer's Disease. EBioMedicine, 2016, 9, 278-292.	6.1	40
51	Genome-wide analysis of genetic correlation in dementia with Lewy bodies, Parkinson's and Alzheimer's diseases. Neurobiology of Aging, 2016, 38, 214.e7-214.e10.	3.1	78
52	Neurodegeneration in frontotemporal lobar degeneration and motor neurone disease associated with expansions in <i>C9orf72</i> is linked to TDPâ€43 pathology and not associated with aggregated forms of dipeptide repeat proteins. Neuropathology and Applied Neurobiology, 2016, 42, 242-254.	3.2	61
53	Accumulation of dipeptide repeat proteins predates that of <scp>TDP</scp> â€43 in frontotemporal lobar degeneration associated with hexanucleotide repeat expansions in <scp><i>C9ORF72</i></scp> gene. Neuropathology and Applied Neurobiology, 2015, 41, 601-612.	3.2	62
54	Histone deacetylases (<scp>HDACs</scp>) in frontotemporal lobar degeneration. Neuropathology and Applied Neurobiology, 2015, 41, 245-257.	3.2	11

#	Article	IF	CITATIONS
55	Dipeptide repeat protein toxicity in frontotemporal lobar degeneration and in motor neurone disease associated with expansions in C9ORF72—a cautionary note. Neurobiology of Aging, 2015, 36, 1224-1226.	3.1	10
56	A small deletion in C9orf72 hides a proportion of expansion carriers in FTLD. Neurobiology of Aging, 2015, 36, 1601.e1-1601.e5.	3.1	19
57	Do NIAâ€AA criteria distinguish Alzheimer's disease from frontotemporal dementia?. Alzheimer's and Dementia, 2015, 11, 207-215.	0.8	23
58	Plasma levels of progranulin and interleukin-6 in frontotemporal lobar degeneration. Neurobiology of Aging, 2015, 36, 1603.e1-1603.e4.	3.1	29
59	p62/SQSTM1 analysis in frontotemporal lobar degeneration. Neurobiology of Aging, 2015, 36, 1603.e5-1603.e9.	3.1	11
60	Generation and characterization of novel conformation-specific monoclonal antibodies for α-synuclein pathology. Neurobiology of Disease, 2015, 79, 81-99.	4.4	116
61	A UBQLN2 variant of unknown significance in frontotemporal lobar degeneration. Neurobiology of Aging, 2015, 36, 546.e15-546.e16.	3.1	13
62	TREM2 analysis and increased risk of Alzheimer's disease. Neurobiology of Aging, 2015, 36, 546.e9-546.e13.	3.1	37
63	Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. Human Molecular Genetics, 2014, 23, 6139-6146.	2.9	178
64	No interaction between tau and <scp>TDP</scp> â€43 pathologies in either frontotemporal lobar degeneration or motor neurone disease. Neuropathology and Applied Neurobiology, 2014, 40, 844-854.	3.2	23
65	C9ORF72: grabbing a tiger by the tail. Acta Neuropathologica, 2014, 127, 311-318.	7.7	1
66	Patterns of microglial cell activation in frontotemporal lobar degeneration. Neuropathology and Applied Neurobiology, 2014, 40, 686-696.	3.2	70
67	Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurology, The, 2014, 13, 686-699.	10.2	302
68	C9ORF72in Dementia with Lewy bodies. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 1435-1436.	1.9	11
69	Patterns of cerebral amyloid angiopathy define histopathological phenotypes in <scp>A</scp> lzheimer's disease. Neuropathology and Applied Neurobiology, 2014, 40, 136-148.	3.2	36
70	Amyloid or tau: the chicken or the egg?. Acta Neuropathologica, 2013, 126, 609-613.	7.7	33
71	Prion-like Properties of Pathological TDP-43 Aggregates from Diseased Brains. Cell Reports, 2013, 4, 124-134.	6.4	418
72	Histone deacetylase class II and acetylated core histone immunohistochemistry in human brains with Huntington's disease. Brain Research, 2013, 1504, 16-24.	2.2	43

#	Article	IF	CITATIONS
73	Dipeptide repeat proteins are present in the p62 positive inclusions in patients with frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72. Acta Neuropathologica Communications, 2013, 1, 68.	5.2	162
74	Extensive deamidation at asparagine residue 279 accounts for weak immunoreactivity of tau with RD4 antibody in Alzheimer's disease brain. Acta Neuropathologica Communications, 2013, 1, 54.	5.2	61
75	Pathological assessments for the presence of hexanucleotide repeat expansions in C9ORF72 in Alzheimer's disease. Acta Neuropathologica Communications, 2013, 1, 50.	5.2	11
76	Prion-like spreading of pathological α-synuclein in brain. Brain, 2013, 136, 1128-1138.	7.6	691
77	Nuclear carrier and RNAâ€binding proteins in frontotemporal lobar degeneration associated with fused in sarcoma (FUS) pathological changes. Neuropathology and Applied Neurobiology, 2013, 39, 157-165.	3.2	22
78	Frontotemporal dementia with amyotrophic lateral sclerosis: A clinical comparison of patients with and without repeat expansions in <i>C9orf72</i> . Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 172-176.	1.7	58
79	Sensitivity and specificity of FTDC criteria for behavioral variant frontotemporal dementia. Neurology, 2013, 80, 1881-1887.	1.1	67
80	A Multicenter Study of Glucocerebrosidase Mutations in Dementia With Lewy Bodies. JAMA Neurology, 2013, 70, 727.	9.0	374
81	Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain, 2012, 135, 693-708.	7.6	486
82	Mechanisms of disease in frontotemporal lobar degeneration: gain of function versus loss of function effects. Acta Neuropathologica, 2012, 124, 373-382.	7.7	89
83	Analysis of the hexanucleotide repeat in C9ORF72 in Alzheimer's disease. Neurobiology of Aging, 2012, 33, 1846.e5-1846.e6.	3.1	38
84	Molecular analysis and biochemical classification of TDP-43 proteinopathy. Brain, 2012, 135, 3380-3391.	7.6	95
85	Epitope mapping of antibodies against TDP-43 and detection of protease-resistant fragments of pathological TDP-43 in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Biochemical and Biophysical Research Communications, 2012, 417, 116-121.	2.1	27
86	Frontotemporal lobar degeneration in a very young patient is associated with fused in sarcoma (FUS) pathological changes. Neuropathology and Applied Neurobiology, 2012, 38, 101-104.	3.2	4
87	A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron, 2011, 72, 257-268.	8.1	3,833
88	Synaptic changes in frontotemporal lobar degeneration: correlation with MAPT haplotype and APOE genotype. Neuropathology and Applied Neurobiology, 2011, 37, 366-380.	3.2	12
89	Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature Genetics, 2011, 43, 429-435.	21.4	1,708
90	Pathological correlates of frontotemporal lobar degeneration in the elderly. Acta Neuropathologica, 2011, 121, 365-371.	7.7	70

#	Article	IF	CITATIONS
91	Granular expression of prolyl-peptidyl isomerase PIN1 is a constant and specific feature of Alzheimer's disease pathology and is independent of tau, Aβ and TDP-43 pathology. Acta Neuropathologica, 2011, 121, 635-649.	7.7	20
92	The most common type of FTLD-FUS (aFTLD-U) is associated with a distinct clinical form of frontotemporal dementia but is not related to mutations in the FUS gene. Acta Neuropathologica, 2011, 122, 99-110.	7.7	108
93	A harmonized classification system for FTLD-TDP pathology. Acta Neuropathologica, 2011, 122, 111-113.	7.7	817
94	TDP-43 pathological changes in early onset familial and sporadic Alzheimer's disease, late onset Alzheimer's disease and Down's Syndrome: association with age, hippocampal sclerosis and clinical phenotype. Acta Neuropathologica, 2011, 122, 703-713.	7.7	128
95	What's in a name? Neuronal intermediate filament inclusion disease (NIFID), frontotemporal lobar degeneration-intermediate filament (FTLD-IF) or frontotemporal lobar degeneration-fused in sarcoma (FTLD-FUS)?. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 1412-1414.	1.9	13
96	The clinical diagnosis of early-onset dementias: diagnostic accuracy and clinicopathological relationships. Brain, 2011, 134, 2478-2492.	7.6	211
97	Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathologica, 2010, 119, 1-4.	7.7	854
98	Phosphorylated TDP-43 pathology and hippocampal sclerosis in progressive supranuclear palsy. Acta Neuropathologica, 2010, 120, 55-66.	7.7	97
99	Effect of topographical distribution of α-synuclein pathology on TDP-43 accumulation in Lewy body disease. Acta Neuropathologica, 2010, 120, 789-801.	7.7	31
100	Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nature Genetics, 2010, 42, 234-239.	21.4	479
101	Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neuropathologica, 2009, 117, 55-62.	7.7	181
102	Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathologica, 2009, 117, 15-18.	7.7	377
103	TDP-43 in ubiquitinated inclusions in the inferior olives in frontotemporal lobar degeneration and in other neurodegenerative diseases: a degenerative process distinct from normal ageing. Acta Neuropathologica, 2009, 118, 359-369.	7.7	30
104	Plasma phosphorylated-TDP-43 protein levels correlate with brain pathology in frontotemporal lobar degeneration. Acta Neuropathologica, 2009, 118, 647-658.	7.7	82
105	Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nature Genetics, 2009, 41, 1088-1093.	21.4	2,697
106	Ubiquitin associated protein 1 is a risk factor for frontotemporal lobar degeneration. Neurobiology of Aging, 2009, 30, 656-665.	3.1	33
107	Imbalance of a serotonergic system in frontotemporal dementia: implication for pharmacotherapy. Psychopharmacology, 2008, 196, 603-610.	3.1	62
108	TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer's disease and frontotemporal lobar degeneration. Acta Neuropathologica, 2008, 116, 141-146.	7.7	142

#	Article	IF	CITATIONS
109	Progressive Anomia Revisited: Focal Degeneration Associated with Progranulin Gene Mutation. Neurocase, 2008, 13, 366-377.	0.6	17
110	Frequency and clinical characteristics of progranulin mutation carriers in the Manchester frontotemporal lobar degeneration cohort: comparison with patients with MAPT and no known mutations. Brain, 2008, 131, 721-731.	7.6	178
111	TDP-43 gene analysis in frontotemporal lobar degeneration. Neuroscience Letters, 2007, 419, 1-4.	2.1	47
112	Cognitive Phenotypes in Alzheimer's Disease and Genetic Risk. Cortex, 2007, 43, 835-845.	2.4	212
113	DJ-1 (PARK7) is associated with 3R and 4R tau neuronal and glial inclusions in neurodegenerative disorders. Neurobiology of Disease, 2007, 28, 122-132.	4.4	32
114	Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA-binding protein, TDP-43. Acta Neuropathologica, 2007, 113, 521-533.	7.7	274
115	Frontotemporal lobar degeneration: clinical and pathological relationships. Acta Neuropathologica, 2007, 114, 31-38.	7.7	277
116	Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathologica, 2007, 114, 5-22.	7.7	978
117	Frontotemporal lobar degenerationâ \in a coming of age. Acta Neuropathologica, 2007, 114, 1-4.	7.7	3
118	TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochemical and Biophysical Research Communications, 2006, 351, 602-611.	2.1	2,248
119	Relationships in Alzheimer's disease between the extent of Abeta deposition in cerebral blood vessel walls, as cerebral amyloid angiopathy, and the amount of cerebrovascular smooth muscle cells and collagen. Neuropathology and Applied Neurobiology, 2006, 32, 332-340.	3.2	48
120	Comparison of extent of tau pathology in patients with frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), frontotemporal lobar degeneration with Pick bodies and early onset Alzheimer's disease. Neuropathology and Applied Neurobiology, 2006, 32, 374-387.	3.2	34
121	Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature, 2006, 442, 916-919.	27.8	1,816
122	A 3'-UTR polymorphism in the oxidized LDL receptor 1 gene increases Aβ40 load as cerebral amyloid angiopathy in Alzheimer's disease. Acta Neuropathologica, 2006, 111, 15-20.	7.7	21
123	An immunohistochemical study of cases of sporadic and inherited frontotemporal lobar degeneration using 3R- and 4R-specific tau monoclonal antibodies. Acta Neuropathologica, 2006, 111, 329-340.	7.7	91
124	Dementia lacking distinctive histology (DLDH) revisited. Acta Neuropathologica, 2006, 112, 551-559.	7.7	80
125	Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype. Acta Neuropathologica, 2006, 112, 539-549.	7.7	298
126	Progranulin gene mutations associated with frontotemporal dementia and progressive non-fluent aphasia. Brain, 2006, 129, 3091-3102.	7.6	185

#	Article	IF	CITATIONS
127	Mutations in progranulin explain atypical phenotypes with variants in MAPT. Brain, 2006, 129, 3124-3126.	7.6	91
128	Accuracy of single-photon emission computed tomography in differentiating frontotemporal dementia from Alzheimer's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 78, 350-355.	1.9	91
129	Frontotemporal dementia. Lancet Neurology, The, 2005, 4, 771-780.	10.2	492
130	Histopathological changes underlying frontotemporal lobar degeneration with clinicopathological correlation. Acta Neuropathologica, 2005, 110, 501-512.	7.7	131
131	Association study and meta-analysis of low-density lipoprotein receptor related protein in Alzheimer's disease. Neuroscience Letters, 2005, 382, 221-226.	2.1	29
132	The genetics and molecular pathology of frontotemporal lobar degeneration. , 2005, , 689-701.		3
133	Association between apolipoprotein E e4 allele and arteriosclerosis, cerebral amyloid angiopathy, and cerebral white matter damage in Alzheimer's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2004, 75, 696-699.	1.9	30
134	Autopsy proven sporadic frontotemporal dementia due to microvacuolar-type histology, with onset at 21 years of age. Journal of Neurology, Neurosurgery and Psychiatry, 2004, 75, 1337-1339.	1.9	20
135	The neuropathology of frontotemporal lobar degeneration with respect to the cytological and biochemical characteristics of tau protein. Neuropathology and Applied Neurobiology, 2004, 30, 1-18.	3.2	72
136	Relationships between arteriosclerosis, cerebral amyloid angiopathy and myelin loss from cerebral cortical white matter in Alzheimer's disease. Neuropathology and Applied Neurobiology, 2004, 30, 46-56.	3.2	75
137	Evidence of a founder effect in families with frontotemporal dementia that harbor the tau +16 splice mutation. American Journal of Medical Genetics Part A, 2004, 125B, 79-82.	2.4	24
138	No association between polymorphisms in the lectin-like oxidised low density lipoprotein receptor (ORL1) gene on chromosome 12 and Alzheimer's disease in a UK cohort. Neuroscience Letters, 2004, 366, 126-129.	2.1	15
139	Frontotemporal dementia with Pickâ€ŧype histology associated with Q336R mutation in the tau gene. Brain, 2004, 127, 1415-1426.	7.6	87
140	Negative association between amyloid plaques and cerebral amyloid angiopathy in Alzheimer's disease. Neuroscience Letters, 2003, 352, 137-140.	2.1	46
141	Inherited frontotemporal dementia in nine British families associated with intronic mutations in the tau gene. Brain, 2002, 125, 732-751.	7.6	116
142	Sporadic Pick's disease: A tauopathy characterized by a spectrum of pathological ? isoforms in gray and white matter. Annals of Neurology, 2002, 51, 730-739.	5.3	141
143	Cases of Alzheimer's disease due to deletion of exon 9 of the presenilin-1 gene show an unusual but characteristic Î2-amyloid pathology known as â€`cotton wool' plaques. Neuropathology and Applied Neurobiology, 2001, 27, 189-196.	3.2	37
144	The selective vulnerability of nerve cells in Huntington's disease. Neuropathology and Applied Neurobiology, 2001, 27, 1-21.	3.2	135

#	Article	IF	CITATIONS
145	Pick's disease is associated with mutations in thetau gene. Annals of Neurology, 2000, 48, 859-867.	5.3	131
146	Pick's disease is associated with mutations in the tau gene. Annals of Neurology, 2000, 48, 859-867.	5.3	7
147	The Apolipoprotein E ε2 Allele and the Pathological Features in Cerebral Amyloid Angiopathy-related Hemorrhage. Journal of Neuropathology and Experimental Neurology, 1999, 58, 711-718.	1.7	142
148	Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature, 1998, 393, 702-705.	27.8	3,333
149	Amyloid (A?) deposition in chromosome 1-linked Alzheimer's disease: The volga german families. Annals of Neurology, 1997, 41, 52-57.	5.3	54
150	Atypical amyloid (Aβ) deposition in the cerebellum in Alzheimer's disease: an immunohistochemical study using end-specific Aβ monoclonal antibodies. Acta Neuropathologica, 1996, 91, 647-653.	7.7	29
151	Patterns of glial cell activity in frontoâ€ŧemporal dementia (lobar atrophy). Neuropathology and Applied Neurobiology, 1996, 22, 17-22.	3.2	14
152	Amyloid β protein (Aβ) deposition in chromosome 14–linked Alzheimer's disease: Predominance of Aβ ₄₂₍₄₃₎ . Annals of Neurology, 1996, 40, 149-156.	5.3	208
153	Amyloid ? protein (A?) deposition: A?42(43) precedes A?40 in down Syndrome. Annals of Neurology, 1995, 37, 294-299.	5.3	378
154	Microglial cells and amyloid ? protein (A?) deposition: association with A?40-plaques. Acta Neuropathologica, 1995, 90, 472-477.	7.7	48
155	Microglial cells and amyloid ? protein (A?) deposition: association with A?40-containing plaques. Acta Neuropathologica, 1995, 90, 472-477.	7.7	2
156	The topographic distribution of brain atrophy in cortical Lewy body disease: comparison with Alzheimer's disease. Acta Neuropathologica, 1995, 89, 178-183.	7.7	0
157	Apolipoprotein E ε2 allele promotes longevity and protects patients with Down's syndrome from dementia. NeuroReport, 1994, 5, 2583-2585.	1.2	93
158	The topographic distribution of brain atrophy in frontal lobe dementia. Acta Neuropathologica, 1993, 85, 334-40.	7.7	69
159	Deposition of amyloid ? protein in non-Alzheimer dementias: evidence for a neuronal origin of parenchymal deposits of ? protein in neurodegenerative disease. Acta Neuropathologica, 1992, 83, 415-419.	7.7	44
160	Progressive language disorder due to lobar atrophy. Annals of Neurology, 1992, 31, 174-183.	5.3	275
161	Disease-specific patterns of locus coeruleus cell loss. Annals of Neurology, 1992, 32, 667-676.	5.3	479
162	A morphological analysis of senile plaques in the brains of nondemented persons of different ages using silver, immunocytochemical and lectin histochemical staining techniques. Neuropathology and Applied Neurobiology, 1990, 16, 17-25.	3.2	65

#	Article	IF	CITATIONS
163	The prevalence of amyloid (A4) protein deposits within the cerebral and cerebellar cortex in Down's syndrome and Alzheimer's disease. Acta Neuropathologica, 1990, 80, 318-327.	7.7	146
164	AN ANALYSIS OF THE MORPHOLOGY OF SENILE PLAQUES IN DOWN'S SYNDROME PATIENTS OF DIFFERENT AGES USING IMMUNOCYTOCHEMICAL AND LECTIN HISTOCHEMICAL TECHNIQUES. Neuropathology and Applied Neurobiology, 1989, 15, 317-329.	3.2	72
165	EARLY SENILE PLAQUES IN DOWN'S SYNDROME BRAINS SHOW A CLOSE RELATIONSHIP WITH CELL BODIES OF NEURONS. Neuropathology and Applied Neurobiology, 1989, 15, 531-542.	3.2	76
166	Neuropathology of Alzheimer's disease: towards an understanding of the pathogenesis. Biochemical Society Transactions, 1989, 17, 73-75.	3.4	2
167	THE PROGRESSION OF THE PATHOLOGICAL CHANGES OF ALZHEIMER'S DISEASE IN FRONTAL AND TEMPORAL NEOCORTEX EXAMINED BOTH AT BIOPSY AND AT AUTOPSY. Neuropathology and Applied Neurobiology, 1988, 14, 177-195.	3.2	149
168	Alzheimer's disease and Down's syndrome. Histopathology, 1988, 13, 125-137.	2.9	206
169	The perforant pathway in Down's syndrome. Annals of Neurology, 1987, 21, 613-613.	5.3	2
170	Presynaptic Serotonergic Dysfunction in Patients with Alzheimer's Disease. Journal of Neurochemistry, 1987, 48, 8-15.	3.9	211
171	THE TOPOGRAPHIC DISTRIBUTION OF SENILE PLAQUES AND NEUROFIBRILLARY TANGLES IN THE BRAINS OF NON-DEMENTED PERSONS OF DIFFERENT AGES. Neuropathology and Applied Neurobiology, 1987, 13, 123-139.	3.2	81
172	The nucleus basalis of Meynert in multi-infarct (vascular) dementia. Acta Neuropathologica, 1986, 71, 332-337.	7.7	24
173	THE TOPOGRAPHY OF PLAQUES AND TANGLES IN DOWN'S SYNDROME PATIENTS OF DIFFERENT AGES. Neuropathology and Applied Neurobiology, 1986, 12, 447-457.	3.2	152
174	AN ULTRASTRUCTURAL ANALYSIS OF THE EFFECTS OF ACCUMULATION OF NEUROFIBRILLARY TANGLE IN PYRAMIDAL NEURONS OF THE CEREBRAL CORTEX IN ALZHEIMER'S DISEASE. Neuropathology and Applied Neurobiology, 1986, 12, 305-319.	3.2	55
175	A QUANTITATIVE STUDY OF THE ULTRASTRUCTURE OF PYRAMIDAL NEURONS OF THE CEREBRAL CORTEX IN ALZHEIMER'S DISEASE IN RELATIONSHIP TO THE DEGREE OF DEMENTIA. Neuropathology and Applied Neurobiology, 1986, 12, 321-329.	3.2	18
176	PATHOLOGICAL EVIDENCE FOR NEUROTRANSMITTER DEFICITS IN DOWN'S SYNDROME OF MIDDLE AGE. Journal of Intellectual Disability Research, 1985, 29, 125-135.	2.0	34
177	ALZHEIMER'S PRESENILE DEMENTIA, SENILE DEMENTIA OF ALZHEIMER TYPE AND DOWN'S SYNDROME IN MIDDLE AGE FORM AN AGE RELATED CONTINUUM OF PATHOLOGICAL CHANGES. Neuropathology and Applied Neurobiology, 1984, 10, 185-207.	3.2	319
178	PATHOLOGICAL BASIS FOR NEUROTRANSMITTER CHANGES IN PARKINSON'S DISEASE. Neuropathology and Applied Neurobiology, 1983, 9, 3-19.	3.2	156
179	IMMUNOHISTOCHEMICAL STAINING OF SENILE PLAQUES. Neuropathology and Applied Neurobiology, 1982, 8, 55-61.	3.2	45
180	NEUROFIBRILLARY PATHOLOGY AND PROTEIN SYNTHETIC CAPABILITY IN NERVE CELLS IN ALZHEIMER'S DISEASE. Neuropathology and Applied Neurobiology, 1981, 7, 37-47.	3.2	49

0

#	Article	IF	CITATIONS
181	NUCLEAR INCLUSIONS IN ALZHEIMER'S DISEASE. Neuropathology and Applied Neurobiology, 1980, 6, 245-253.	3.2	16
182	Changes in the Monoamine Containing Neurones of the Human Cns in Senile Dementia. British Journal of Psychiatry, 1980, 136, 533-541.	2.8	273
183	A QUANTITATIVE STUDY OF THE GLIA OF THE PURKINJE CELL LAYER OF THE CEREBELLUM IN MAMMALS. Neuropathology and Applied Neurobiology, 1979, 5, 71-76.	3.2	10
184	Granulovacuolar degeneration in pyramidal cells of the hippocampus. Acta Neuropathologica, 1978, 42, 149-151.	7.7	22
185	THE QUANTITATIVE ASSESSMENT OF LIPOFUSCIN PIGMENT, CYTOPLASMIC RNA AND NUCLEOLAR VOLUME IN SENILE DEMENTIA. Neuropathology and Applied Neurobiology, 1978, 4, 129-135.	3.2	89
186	The DNA content of Purkinje cells in mammals. Journal of Comparative Neurology, 1978, 180, 345-347.	1.6	29
187	TETRAPLOIDY AND BLINDNESS. Neuropathology and Applied Neurobiology, 1977, 3, 137-140.	3.2	1
188	LIPOPROTEIN PIGMENTS—THEIR RELATIONSHIP TO AGEING IN THE HUMAN NERVOUS SYSTEM. Brain, 1974, 97 481-488.	7.6	159
189	The Neuropathology of Alzheimer's Disease. , 0, , 223-226.		0

190 The Role of Presenilins in Alzheimer's Disease. , 0, , 217-218.