
Alexey L Ragozin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4292089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mg and Fe-rich carbonate–silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia). Lithos, 2009, 112, 638-647.	1.4	120
2	Local variations of carbon isotope composition in diamonds from São-Luis (Brazil): Evidence for heterogenous carbon reservoir in sublithospheric mantle. Chemical Geology, 2014, 363, 114-124.	3.3	74
3	Fibrous diamonds from the placers of the northeastern Siberian Platform: carbonate and silicate crystallization media. Russian Geology and Geophysics, 2011, 52, 1298-1309.	0.7	72
4	Evidence for multistage evolution in a xenolith of diamond-bearing eclogite from the Udachnaya kimberlite pipe. Lithos, 2008, 105, 289-300.	1.4	71
5	The timing of the retrograde partial melting in the Kumdy-Kol region (Kokchetav Massif, Northern) Tj ETQq1 1 0.	.784314 rg 1.4	gBT_/Overlock
6	Diamondiferous subcontinental lithospheric mantle of the northeastern Siberian Craton: Evidence from mineral inclusions in alluvial diamonds. Gondwana Research, 2015, 28, 106-120.	6.0	41
7	Composition of cloudy microinclusions in octahedral diamonds from the Internatsional'naya kimberlite pipe (Yakutia). Russian Geology and Geophysics, 2011, 52, 85-96.	0.7	39
8	Merwinite in diamond from Sao Luiz, Brazil: A new mineral of the Ca-rich mantle environment. American Mineralogist, 2014, 99, 547-550.	1.9	38
9	Chloride-carbonate fluid in diamonds from the eclogite xenolith. Doklady Earth Sciences, 2007, 415, 961-964.	0.7	31
10	Diamond formation during metasomatism of mantle eclogite by chloride-carbonate melt. Contributions To Mineralogy and Petrology, 2018, 173, 1.	3.1	31
11	Evidence for phase transitions in mineral inclusions in superdeep diamonds of the São Luiz deposit (Brazil). Russian Geology and Geophysics, 2015, 56, 296-305.	0.7	30
12	The origin of magnetite-apatite rocks of Mushgai-Khudag Complex, South Mongolia: mineral chemistry and studies of melt and fluid inclusions. Lithos, 2018, 320-321, 567-582.	1.4	30
13	New data on the growth environment of diamonds of the variety V from placers of the northeastern Siberian platform. Doklady Earth Sciences, 2009, 425, 436-440.	0.7	28
14	Oxidized magmatogene fluids: metal-bearing capacity and role in ore formation. Russian Geology and Geophysics, 2011, 52, 144-164.	0.7	28
15	Tectonothermal evolution of the continental crust beneath the Yakutian diamondiferous province (Siberian craton): U–Pb and Hf isotopic evidence on zircons from crustal xenoliths of kimberlite pipes. Precambrian Research, 2016, 282, 1-20.	2.7	28
16	The mineralogy of Ca-rich inclusions in sublithospheric diamonds. Geochemistry International, 2016, 54, 890-900.	0.7	27
17	Carbon isotopes and nitrogen contents in placer diamonds from the NE Siberian craton: implications for diamond origins. European Journal of Mineralogy, 2014, 26, 41-52.	1.3	25
18	Growth medium composition of coated diamonds from the Sytykanskaya kimberlite pipe (<i>Yakutia</i>). Russian Geology and Geophysics, 2012, 53, 1197-1208.	0.7	24

ALEXEY L RAGOZIN

#	Article	IF	CITATIONS
19	Eclogite–gneiss complex of the Muya block (<i>East Siberia</i>): age, mineralogy, geochemistry, and petrology. Russian Geology and Geophysics, 2012, 53, 501-521.	0.7	24

Multi-stage modification of Paleoarchean crust beneath the Anabar tectonic province (Siberian) Tj ETQq0 0 0 rgBT $\frac{10}{2.7}$ verlock 10 Tf 50 70

21	Water content in minerals of mantle xenoliths from the Udachnaya pipe kimberlites (<i>Yakutia</i>). Russian Geology and Geophysics, 2014, 55, 428-442.	0.7	21
22	The crust-mantle evolution of the Anabar tectonic province in the Siberian Craton: Coupled or decoupled?. Precambrian Research, 2019, 332, 105388.	2.7	20
23	Heterogeneous distribution of water in the mantle beneath the central Siberian Craton: Implications from the Udachnaya Kimberlite Pipe. Gondwana Research, 2017, 47, 249-266.	6.0	19
24	Majoritic garnets in diamonds from placers of the Northeastern Siberian Platform. Doklady Earth Sciences, 2010, 432, 835-838.	0.7	18
25	Eclogitic diamonds from variable crustal protoliths in the northeastern Siberian craton: Trace elements and coupled l̃′13C–l̃′18O signatures in diamonds and garnet inclusions. Chemical Geology, 2016, 422, 46-59.	3.3	18
26	Evidence for a subduction component in the diamond-bearing mantle of the Siberian craton. Russian Geology and Geophysics, 2016, 57, 111-126.	0.7	18
27	Distribution of OK1, N3 and NU1 defects in diamond crystals of different habits. European Journal of Mineralogy, 2012, 24, 645-650.	1.3	17
28	Diamond-rich placer deposits from iron-saturated mantle beneath the northeastern margin of the Siberian Craton. Lithos, 2020, 364-365, 105514.	1.4	16
29	Plume-lithosphere interaction, and the formation of fibrous diamonds. Geochemical Perspectives Letters, 0, 8, 26-30.	5.0	16
30	Evidence for evolution of diamond crystallization medium in eclogite xenolith from the Udachnaya kimberlite pipe, Yakutia. Doklady Earth Sciences, 2006, 407, 465-468.	0.7	14
31	Radial mosaic internal structure of rounded diamond crystals from alluvial placers of Siberian platform. Mineralogy and Petrology, 2016, 110, 861-875.	1.1	14
32	Origin and Evolution of High-Mg Carbonatitic and Low-Mg Carbonatitic to Silicic High-Density Fluids in Coated Diamonds from Udachnaya Kimberlite Pipe. Minerals (Basel, Switzerland), 2019, 9, 734.	2.0	14
33	Metasomatic Evolution of Coesite-Bearing Diamondiferous Eclogite from the Udachnaya Kimberlite. Minerals (Basel, Switzerland), 2020, 10, 383.	2.0	14
34	Nb-rutile from eclogite microxenolith of the Zagadochnaya kimberlite pipe. Doklady Earth Sciences, 2011, 439, 970-973.	0.7	13
35	Evidence of neoproterosoic continental subduction in the Baikal-Muya fold belt. Doklady Earth Sciences, 2014, 459, 1442-1445.	0.7	13
36	Chemical heterogeneity in the diamondiferous eclogite xenolith from the Udachnaya Kimberlite Pipe. Doklady Earth Sciences, 2008, 419, 308-311.	0.7	12

ALEXEY L RAGOZIN

#	Article	IF	CITATIONS
37	Diamondiferous Archean rocks of the Olondo greenstone belt (<i>western Aldan–Stanovoy) Tj ETQq1 1 0.784</i>	4314 rgB1 0.7	√/Overlock 10
38	Polycrystalline diamond aggregates from the Mir kimberlite pipe, Yakutia: Evidence for mantle metasomatism. Lithos, 2016, 265, 257-266.	1.4	11
39	Silicate Melt Inclusions in Diamonds of Eclogite Paragenesis from Placers on the Northeastern Siberian Craton. Minerals (Basel, Switzerland), 2019, 9, 412.	2.0	11
40	The role of eclogites in the redistribution of water in the subcontinental mantle of the Siberian craton: results of determination of the water content in minerals from the Udachnaya pipe eclogites. Russian Geology and Geophysics, 2018, 59, 763-779.	0.7	9
41	Diamond-forming HDFs tracking episodic mantle metasomatism beneath Nyurbinskaya kimberlite pipe (Siberian craton). Contributions To Mineralogy and Petrology, 2020, 175, 1.	3.1	9
42	Polygenic Nature of Olivines from the Ultramafic Lamprophyres of the Terina Complex (Chadobets) Tj ETQq0 0 (Minerals (Basel, Switzerland), 2021, 11, 408.) rgBT /Ov 2.0	verlock 10 Tf 5 9
43	Micro-Raman spectra of ugrandite garnet. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 73, 436-439.	3.9	8
44	Specific Internal Structure of Diamonds from Zarnitsa Kimberlite Pipe. Crystals, 2017, 7, 133.	2.2	8
45	X-ray topography of natural diamonds on the VEPP-3 SR beam. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 603, 170-173.	1.6	7
46	Mobility of elements in a continental subduction zone: evidence from the UHP metamorphic complex of the Kokchetav massif. Russian Geology and Geophysics, 2015, 56, 1016-1034.	0.7	7
47	Isotopic-geochemical evidence for crustal contamination of eclogites in the Kokchetav subduction-collision zone. Russian Geology and Geophysics, 2018, 59, 1560-1576.	0.7	7
48	Distribution of D ₂ 0 Molecules of First and Second Types in Hydrothermally Grown Beryl Crystals. Crystal Growth and Design, 2021, 21, 2283-2291.	3.0	7
49	U-Pb age of rutile from the eclogite xenolith of the Udachnaya kimberlite pipe. Doklady Earth Sciences, 2014, 457, 861-864.	0.7	6
50	The behavior of ore elements in oxidized heterophase chloride and carbonate–chloride–sulfate fluids of porphyry Cu–Mo(Au) deposits (from experimental data). Russian Geology and Geophysics, 2015, 56, 435-445.	0.7	6
51	Formation of mosaic diamonds from the Zarnitsa kimberlite. Russian Geology and Geophysics, 2018, 59, 486-498.	0.7	6
52	Deformation Features of Super-Deep Diamonds. Minerals (Basel, Switzerland), 2020, 10, 18.	2.0	6
53	Three-dimensional distribution of minerals in diamondiferous eclogites, obtained by the method of high-resolution X-ray computed tomography. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 575, 255-258.	1.6	5
54	Local variations in carbon isotopes and nitrogen contents in diamonds from placers of the northeastern portion of the Siberian Platform. Doklady Earth Sciences, 2011, 440, 1282-1286.	0.7	5

Alexey L Ragozin

#	Article	IF	CITATIONS
55	Mixed-Habit Type Ib-IaA Diamond from an Udachnaya Eclogite. Minerals (Basel, Switzerland), 2019, 9, 741.	2.0	5
56	Multiple tectonomagmatic reactivation of the unexposed basement in the northern Siberian craton: from Paleoproterozoic orogeny to Phanerozoic kimberlite magmatism. International Geology Review, 2022, 64, 1119-1138.	2.1	5
57	SiO2 Inclusions in Sublithospheric Diamonds. Geochemistry International, 2019, 57, 964-972.	0.7	4
58	Subduction related population of diamonds in Yakutian placers, northeastern Siberian platform. Contributions To Mineralogy and Petrology, 2020, 175, 1.	3.1	4
59	Ubiquitous postâ€peak zircon in an eclogite from the <scp>Kumdyâ€Kol</scp> , Kokchetav <scp>UHPâ€HP</scp> Massif (Kazakhstan): Significance of exhumationâ€related zircon growth and modification in continentalâ€subduction settings. Island Arc, 2021, 30, e12385.	1.1	4
60	Isotope-Geochemical Evidence of the Nature of the Protoliths of Diamondiferous Rocks of the Kokchetav Subduction–Collision Zone (Northern Kazakhstan). Russian Geology and Geophysics, 2021, 62, 547-556.	0.7	4
61	Evolution of the Lithospheric Mantle beneath the Nakyn Kimberlite Field: Evidence from Garnets in the Peridotite Xenoliths of the Nyurba and Botuoba Pipes. Geochemistry International, 2021, 59, 743-756.	0.7	4
62	Evidence of Eoarchean crust beneath the Yakutian kimberlite province in the Siberian craton. Precambrian Research, 2022, 369, 106512.	2.7	4
63	Homogenization of carbonate-bearing microinclusions in diamond at P–T parameters of the upper mantle. Doklady Earth Sciences, 2016, 470, 1042-1045.	0.7	2
64	The Internal Structure of Yellow Cuboid Diamonds from Alluvial Placers of the Northeastern Siberian Platform. Crystals, 2017, 7, 238.	2.2	2
65	Isotope–Geochemical Evidence for the Nature of Protolite Eclogite of the Kokchetav Massif (Kazakhstan). Doklady Earth Sciences, 2018, 479, 408-411.	0.7	1
66	The protolith nature of diamondiferous metamorphic rocks of the Kokchetav Massif. Acta Geologica Sinica, 2019, 93, 173-173.	1.4	0
67	Geochemical Evidence for Participation of the Subducted Crust in the Process of Transformation of the Subcontinental Mantle in the Yakutian Diamondiferous Province. Doklady Earth Sciences, 2020, 493, 513-516.	0.7	0
68	MOBILITY OF ELEMENTS IN A CONTINENTAL SUBDUCTION ZONE: EVIDENCE FROM THE UHP METAMORPHIC COMPLEX OF THE KOKCHETAV MASSIF. Russian Geology and Geophysics, 2015, 56, 1298-1321.	0.0	0
69	The Nature of Heterogeneity of High-Chromium Garnets in Xenolite of Deformed Lherzolite from Udachnaya Kimberlite Pipe (Yakutia). Doklady Earth Sciences, 2021, 501, 1029-1037.	0.7	0