## Monica Vaccari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4291907/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                       | lF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis, 2015, 36, S254-S296.                                                                                 | 2.8 | 239       |
| 2  | Environmental immune disruptors, inflammation and cancer risk. Carcinogenesis, 2015, 36, S232-S253.                                                                                                                                           | 2.8 | 168       |
| 3  | Causes of genome instability: the effect of low dose chemical exposures in modern society.<br>Carcinogenesis, 2015, 36, S61-S88.                                                                                                              | 2.8 | 149       |
| 4  | E-cigarettes induce toxicological effects that can raise the cancer risk. Scientific Reports, 2017, 7, 2028.                                                                                                                                  | 3.3 | 130       |
| 5  | The effect of environmental chemicals on the tumor microenvironment. Carcinogenesis, 2015, 36, S160-S183.                                                                                                                                     | 2.8 | 97        |
| 6  | Metabolic reprogramming and dysregulated metabolism: cause, consequence and/or enabler of environmental carcinogenesis?. Carcinogenesis, 2015, 36, S203-S231.                                                                                 | 2.8 | 93        |
| 7  | Chemical carcinogen safety testing: OECD expert group international consensus on the development of an integrated approach for the testing and assessment of chemical non-genotoxic carcinogens. Archives of Toxicology, 2020, 94, 2899-2923. | 4.2 | 72        |
| 8  | Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression. Carcinogenesis, 2015, 36, S2-S18.                                                                                                     | 2.8 | 55        |
| 9  | Progress towards an OECD reporting framework for transcriptomics and metabolomics in regulatory toxicology. Regulatory Toxicology and Pharmacology, 2021, 125, 105020.                                                                        | 2.7 | 46        |
| 10 | Chemical compounds from anthropogenic environment and immune evasion mechanisms: potential interactions. Carcinogenesis, 2015, 36, S111-S127.                                                                                                 | 2.8 | 43        |
| 11 | Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: focus on the cancer hallmark of tumor angiogenesis. Carcinogenesis, 2015, 36, S184-S202.                                                  | 2.8 | 41        |
| 12 | The impact of low-dose carcinogens and environmental disruptors on tissue invasion and metastasis.<br>Carcinogenesis, 2015, 36, S128-S159.                                                                                                    | 2.8 | 40        |
| 13 | Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death.<br>Carcinogenesis, 2015, 36, S89-S110.                                                                                                       | 2.8 | 33        |
| 14 | Cancer-related genes transcriptionally induced by the fungicide penconazole. Toxicology in Vitro, 2014, 28, 125-130.                                                                                                                          | 2.4 | 32        |
| 15 | Disruptive chemicals, senescence and immortality. Carcinogenesis, 2015, 36, S19-S37.                                                                                                                                                          | 2.8 | 32        |
| 16 | The potential for chemical mixtures from the environment to enable the cancer hallmark of sustained proliferative signalling. Carcinogenesis, 2015, 36, S38-S60.                                                                              | 2.8 | 32        |
| 17 | BALB/c 3T3 cell transformation assay for the prediction of carcinogenic potential of chemicals and environmental mixtures. Toxicology in Vitro, 2010, 24, 1292-1300.                                                                          | 2.4 | 27        |
| 18 | The transformics assay: first steps for the development of an integrated approach to investigate the malignant cell transformation in vitro. Carcinogenesis, 2018, 39, 955-967.                                                               | 2.8 | 27        |

Monica Vaccari

| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Gene Expression Changes in Medical Workers Exposed to Radiation. Radiation Research, 2009, 172, 500.                                                                                        | 1.5  | 26        |
| 20 | Gene expression time-series analysis of Camptothecin effects in U87-MG and DBTRG-05 glioblastoma cell lines. Molecular Cancer, 2008, 7, 66.                                                 | 19.2 | 22        |
| 21 | Identification of pathway-based toxicity in the BALB/c 3T3 cell model. Toxicology in Vitro, 2015, 29, 1240-1253.                                                                            | 2.4  | 20        |
| 22 | A cDNA-microarray analysis of camptothecin resistance in glioblastoma cell lines. Cancer Letters, 2006, 231, 74-86.                                                                         | 7.2  | 18        |
| 23 | The Secretive Liaison of Particulate Matter and SARS-CoV-2. A Hypothesis and Theory Investigation.<br>Frontiers in Genetics, 2020, 11, 579964.                                              | 2.3  | 13        |
| 24 | In vitroTransformation of BALB/c 3T3 Cells by 1,1,2,2-Tetrachloroethane. Japanese Journal of Cancer<br>Research, 1990, 81, 786-792.                                                         | 1.7  | 12        |
| 25 | Different sensitivity of BALB/c 3T3 cell clones in the response to carcinogens. Toxicology in Vitro, 2011, 25, 1183-1190.                                                                   | 2.4  | 11        |
| 26 | Enhancement of BALB/c 3T3 cells transformation by 1,2-dibromoethane promoting effect.<br>Carcinogenesis, 1996, 17, 225-231.                                                                 | 2.8  | 10        |
| 27 | Alternative Testing Methods for Predicting Health Risk from Environmental Exposures. Sustainability, 2014, 6, 5265-5283.                                                                    | 3.2  | 10        |
| 28 | Initiating activity of 1,1,2,2-tetrachloroethane in two-stage BALBc 3T3 cell transformation. Cancer<br>Letters, 1992, 64, 145-153.                                                          | 7.2  | 6         |
| 29 | An improved classification of foci for carcinogenicity testing by statistical descriptors. Toxicology in<br>Vitro, 2015, 29, 1839-1850.                                                     | 2.4  | 6         |
| 30 | 1,2-Dibromoethane as an Initiating Agent for Cell Transformation. Japanese Journal of Cancer<br>Research, 1995, 86, 168-173.                                                                | 1.7  | 5         |
| 31 | The use of omics-based approaches in regulatory toxicology: an alternative approach to assess the no observed transcriptional effect level. Microchemical Journal, 2018, 136, 143-148.      | 4.5  | 5         |
| 32 | Hazard assessment of air pollutants: The transforming ability of complex pollutant mixtures in the<br>Bhas 42 cell model. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 623-633. | 1.5  | 4         |
| 33 | Mechanistic Interrogation of Cell Transformation In Vitro: The Transformics Assay as an Exemplar of<br>Oncotransformation. International Journal of Molecular Sciences, 2022, 23, 7603.     | 4.1  | 2         |
| 34 | Environmental pollution and COVID-19: the molecular terms and predominant disease outcomes of their sweetheart agreement. Epidemiologia E Prevenzione, 2020, 44, 169-182.                   | 1.1  | 1         |
| 35 | Assessment of polychlorinated biphenyls: Prospects for a global approach. Toxicology Letters, 2009, 189, S193-S194.                                                                         | 0.8  | 0         |
| 36 | Cell cycle-related genes transcriptionally induced by the mycotoxin Zearalenone. Toxicology Letters, 2013, 221, S142-S143.                                                                  | 0.8  | 0         |

0

| #  | Article                                                                                                             | IF | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------|----|-----------|
| 37 | GENE-ENVIRONMENT INTERACTION: THE IMPORTANCE OF OMICS IN UNDERSTANDING THE EFFECT OF LOW-DOSE EXPOSURE. , 2009, , . |    | 0         |
|    |                                                                                                                     |    |           |

Children's and Adult Involuntary and Occupational Exposures and Cancer., 0, , 259-316.

4