Jia-Mei Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4291668/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two anhydrous forms and one monohydrate of a cocrystal of axitinib and glutaric acid: characterization, property evaluation and phase transition study. CrystEngComm, 2022, 24, 2138-2148.	1.3	2
2	Simultaneously improving the physicochemical and pharmacokinetic properties of vemurafenib through cocrystallization strategy. Journal of Drug Delivery Science and Technology, 2022, 70, 103230.	1.4	2
3	Near-infrared photothermal conversion properties of carbazole-based cocrystals with different degrees of charge transfer. CrystEngComm, 2022, 24, 4622-4628.	1.3	7
4	Cocrystals of regorafenib with dicarboxylic acids: synthesis, characterization and property evaluation. CrystEngComm, 2021, 23, 653-662.	1.3	11
5	Novel Salt-Cocrystals of Berberine Hydrochloride with Aliphatic Dicarboxylic Acids: Odd–Even Alternation in Physicochemical Properties. Molecular Pharmaceutics, 2021, 18, 1758-1767.	2.3	19
6	Temozolomide–Hesperetin Drug–Drug Cocrystal with Optimized Performance in Stability, Dissolution, and Tabletability. Crystal Growth and Design, 2021, 21, 838-846.	1.4	53
7	Cocrystallization of axitinib with carboxylic acids: preparation, crystal structures and dissolution behavior. CrystEngComm, 2021, 23, 5504-5515.	1.3	9
8	5-Fluorouracil Cocrystals with Lipophilic Hydroxy-2-Naphthoic Acids: Crystal Structures, Theoretical Computations, and Permeation Studies. Crystal Growth and Design, 2020, 20, 923-933.	1.4	14
9	Crystal Structures, Stability, and Solubility Evaluation of Two Polymorphs of a 2:1 Melatonin–Piperazine Cocrystal. Crystal Growth and Design, 2020, 20, 1079-1087.	1.4	25
10	A 5-fluorouracil–kaempferol drug–drug cocrystal: a ternary phase diagram, characterization and property evaluation. CrystEngComm, 2020, 22, 8127-8135.	1.3	20
11	Modulation of Solid-State Optical Properties of <i>o</i> -Hydroxynaphthoic Acids through Formation of Charge Transfer Cocrystals with TCNB. Crystal Growth and Design, 2020, 20, 7492-7500.	1.4	13
12	Solubility and Permeability Improvement of Allopurinol by Cocrystallization. Crystal Growth and Design, 2020, 20, 5160-5168.	1.4	31
13	Cocrystals of Penciclovir with Hydroxybenzoic Acids: Synthesis, Crystal Structures, and Physicochemical Evaluation. Crystal Growth and Design, 2020, 20, 4108-4119.	1.4	9
14	Modulating the solubility and pharmacokinetic properties of 5-fluorouracil <i>via</i> cocrystallization. CrystEngComm, 2020, 22, 3670-3682.	1.3	21
15	Intermolecular interactions and permeability of 5-fluorouracil cocrystals with a series of isomeric hydroxybenzoic acids: a combined theoretical and experimental study. CrystEngComm, 2019, 21, 5095-5105.	1.3	26
16	Polymorphic Forms of a Molecular Salt of Phenazopyridine with 3,5-Dihydroxybenzoic Acid: Crystal Structures, Theoretical Calculations, Thermodynamic Stability, and Solubility Aspects. Crystal Growth and Design, 2019, 19, 5636-5647.	1.4	14
17	Improving solid-state properties of berberine chloride through forming a salt cocrystal with citric acid. International Journal of Pharmaceutics, 2019, 554, 14-20.	2.6	55
18	Constructing Anti-Glioma Drug Combination with Optimized Properties through Cocrystallization. Crystal Growth and Design, 2018, 18, 4270-4274.	1.4	27

Jia-Mei Chen

#	Article	IF	CITATIONS
19	Pharmaceutical cocrystallization: an effective approach to modulate the physicochemical properties of solid-state drugs. CrystEngComm, 2018, 20, 5292-5316.	1.3	79
20	Dapagliflozin-citric acid cocrystal showing better solid state properties than dapagliflozin. European Journal of Pharmaceutical Sciences, 2017, 104, 255-261.	1.9	54
21	Phenazopyridine-phthalimide nano-cocrystal: Release rate and oral bioavailability enhancement. European Journal of Pharmaceutical Sciences, 2017, 109, 581-586.	1.9	27
22	Improving the Solubility and Bioavailability of Apixaban via Apixaban–Oxalic Acid Cocrystal. Crystal Growth and Design, 2016, 16, 2923-2930.	1.4	92
23	Improving the Membrane Permeability of 5-Fluorouracil via Cocrystallization. Crystal Growth and Design, 2016, 16, 4430-4438.	1.4	81
24	Mechanism study on stability enhancement of adefovir dipivoxil by cocrystallization: Degradation kinetics and structure-stability correlation. European Journal of Pharmaceutical Sciences, 2016, 85, 141-148.	1.9	32
25	Solubility and Dissolution Rate Enhancement of Triamterene by a Cocrystallization Method. Crystal Growth and Design, 2015, 15, 3785-3791.	1.4	31
26	Lenalidomide–Gallic Acid Cocrystals with Constant High Solubility. Crystal Growth and Design, 2015, 15, 4869-4875.	1.4	36
27	Thermodynamics and preliminary pharmaceutical characterization of a melatonin–pimelic acid cocrystal prepared by a melt crystallization method. CrystEngComm, 2015, 17, 612-620.	1.3	46
28	Pharmaceutical Cocrystals of Ribavirin with Reduced Release Rates. Crystal Growth and Design, 2014, 14, 6399-6408.	1.4	78
29	New Approach to Reduce the Overhigh Plasma Concentration of Captopril by the Formation of Zinc Coordination Polymer. Crystal Growth and Design, 2014, 14, 2599-2604.	1.4	5
30	Improving the Solubility of Lenalidomide via Cocrystals. Crystal Growth and Design, 2014, 14, 3069-3077.	1.4	47
31	Synthon polymorphs of 1 : 1 co-crystal of 5-fluorouracil and 4-hydroxybenzoic acid: their relative stability and solvent polarity dependence of grinding outcomes. CrystEngComm, 2014, 16, 6450-6458.	1.3	37
32	Enhancing the Solubility of 6-Mercaptopurine by Formation of Ionic Cocrystal with Zinc Trifluoromethanesulfonate: Single-Crystal-to-Single-Crystal Transformation. Crystal Growth and Design, 2014, 14, 5019-5025.	1.4	54
33	Approach of Cocrystallization to Improve the Solubility and Photostability of Tranilast. Crystal Growth and Design, 2013, 13, 3546-3553.	1.4	79
34	Simultaneously enhancing the solubility and permeability of acyclovir by crystal engineering approach. CrystEngComm, 2013, 15, 6457.	1.3	98
35	Two polymorphs and one hydrate of a molecular salt involving phenazopyridine and salicylic acid. CrystEngComm, 2013, 15, 7852.	1.3	17
36	The Delivery of Triamterene by Cucurbit[7]uril: Synthesis, Structures and Pharmacokinetics Study. Molecular Pharmaceutics, 2013, 10, 4698-4705.	2.3	38

JIA-MEI CHEN

#	Article	IF	CITATIONS
37	Phenazopyridine Cocrystal and Salts That Exhibit Enhanced Solubility and Stability. Crystal Growth and Design, 2012, 12, 3144-3152.	1.4	76
38	Enhancing the Hygroscopic Stability of <i>S</i> -Oxiracetam via Pharmaceutical Cocrystals. Crystal Growth and Design, 2012, 12, 4562-4566.	1.4	78
39	Crystal engineering approach to improve the solubility of mebendazole. CrystEngComm, 2012, 14, 6221.	1.3	66
40	Improving the Solubility of 6-Mercaptopurine via Cocrystals and Salts. Crystal Growth and Design, 2012, 12, 6004-6011.	1.4	46
41	Improving the Solubility of Agomelatine via Cocrystals. Crystal Growth and Design, 2012, 12, 2226-2233.	1.4	70
42	Structures of Polymorphic Agomelatine and Its Cocrystals with Acetic Acid and Ethylene Glycol. Crystal Growth and Design, 2011, 11, 466-471.	1.4	47
43	Anion Recognition of Chloride and Bromide by a Rigid Dicobalt(II) Cryptate. Inorganic Chemistry, 2008, 47, 3158-3165.	1.9	37
44	CO2 Fixation and Transformation by a Dinuclear Copper Cryptate under Acidic Conditions. Chemistry - an Asian Journal, 2007, 2, 710-719.	1.7	68