Michael Urbakh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4291494/publications.pdf

Version: 2024-02-01

181 8,748
papers citations h

51 88
h-index g-index

183 183 docs citations

183 times ranked 5862 citing authors

#	Article	IF	CITATIONS
1	Negative tension controls stability and structure of intermediate filament networks. Scientific Reports, 2022, 12, 16.	1.6	3
2	Thermal Friction Enhancement in Zwitterionic Monolayers. Journal of Physical Chemistry C, 2022, 126, 2797-2805.	1.5	4
3	Structural Forces in Ionic Liquids: The Role of Ionic Size Asymmetry. Journal of Physical Chemistry B, 2022, 126, 1242-1253.	1.2	21
4	Interlayer Registry Index of Layered Transition Metal Dichalcogenides. Journal of Physical Chemistry Letters, 2022, 13, 3353-3359.	2.1	3
5	Sliding on the edge. Nature Materials, 2022, 21, 12-14.	13.3	2
6	Catalytic Growth of Ultralong Graphene Nanoribbons on Insulating Substrates. Advanced Materials, 2022, 34, e2200956.	11.1	12
7	Microscopic mechanisms of frictional aging. Journal of the Mechanics and Physics of Solids, 2022, 166, 104944.	2.3	3
8	Structural effects in nanotribology of nanoscale films of ionic liquids confined between metallic surfaces. Physical Chemistry Chemical Physics, 2021, 23, 22174-22183.	1.3	8
9	Mechanisms of frictional energy dissipation at graphene grain boundaries. Physical Review B, 2021, 103,	1.1	16
10	Parity-Dependent Moiré Superlattices in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>h</mml:mi>Graphene<mml:mo>/</mml:mo><mml:mi>h</mml:mi><mml:ri>Heterostructures: A Route to Mechanomutable Metamaterials. Physical Review Letters, 2021, 126, 216101.</mml:ri></mml:math>	mt ex t>â^'‹	د/mml:mtext>
11	Theoretical demonstration of a capacitive rotor for generation of alternating current from mechanical motion. Nature Communications, 2021, 12, 3678.	5.8	2
12	Interfacial ferroelectricity by van der Waals sliding. Science, 2021, 372, 1462-1466.	6.0	262
13	Directional anisotropy of friction in microscale superlubric graphite/ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>h</mml:mi><mml:mi>BN<td>i> draml:n</td><td>nrow></td></mml:mi></mml:mrow></mml:math>	i> dra ml:n	nrow>
14	Registry-Dependent Peeling of Layered Material Interfaces: The Case of Graphene Nanoribbons on Hexagonal Boron Nitride. ACS Applied Materials & Samp; Interfaces, 2021, 13, 43533-43539.	4.0	6
15	Superlubric polycrystalline graphene interfaces. Nature Communications, 2021, 12, 5694.	5.8	14
16	Anisotropic Interlayer Force Field for Transition Metal Dichalcogenides: The Case of Molybdenum Disulfide. Journal of Chemical Theory and Computation, 2021, 17, 7237-7245.	2.3	12
17	Temperature and velocity dependent friction of a microscale graphite-DLC heterostructure. Friction, 2020, 8, 462-470.	3.4	27
18	Electrotunable Lubrication with Ionic Liquids: the Effects of Cation Chain Length and Substrate Polarity. ACS Applied Materials & Samp; Interfaces, 2020, 12, 4105-4113.	4.0	27

#	Article	IF	CITATIONS
19	Mechanical and Tribological Properties of Layered Materials under High Pressure: Assessing the Importance of Many-Body Dispersion Effects. Journal of Chemical Theory and Computation, 2020, 16, 666-676.	2.3	39
20	Structural lubricity in soft and hard matter systems. Nature Communications, 2020, 11, 4657.	5.8	62
21	Lateral Ordering in Nanoscale Ionic Liquid Films between Charged Surfaces Enhances Lubricity. ACS Nano, 2020, 14, 13256-13267.	7.3	26
22	Model for Bundling of Keratin Intermediate Filaments. Biophysical Journal, 2020, 119, 65-74.	0.2	9
23	Origin of Friction in Superlubric Graphite Contacts. Physical Review Letters, 2020, 125, 126102.	2.9	44
24	Controllable Thermal Conductivity in Twisted Homogeneous Interfaces of Graphene and Hexagonal Boron Nitride. Nano Letters, 2020, 20, 7513-7518.	4.5	50
25	Electrotunable Friction in Diluted Room Temperature Ionic Liquids: Implications for Nanotribology. ACS Applied Nano Materials, 2020, 3, 10708-10719.	2.4	15
26	Load-induced dynamical transitions at graphene interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12618-12623.	3.3	14
27	Load-velocity-temperature relationship in frictional response of microscopic contacts. Journal of the Mechanics and Physics of Solids, 2020, 137, 103880.	2.3	16
28	The Princess and the Nanoscale Pea: Long-Range Penetration of Surface Distortions into Layered Materials Stacks. ACS Nano, 2019, 13, 7603-7609.	7.3	23
29	Structural Forces in Mixtures of Ionic Liquids with Organic Solvents. Langmuir, 2019, 35, 15410-15420.	1.6	11
30	Load and Velocity Dependence of Friction Mediated by Dynamics of Interfacial Contacts. Physical Review Letters, 2019, 123, 116102.	2.9	26
31	Free and Bound States of Ions in Ionic Liquids, Conductivity, and Underscreening Paradox. Physical Review X, 2019, 9, .	2.8	54
32	Random search with resetting as a strategy for optimal pollination. Physical Review E, 2019, 99, 052119.	0.8	17
33	Direct Measurement of Adhesions of Liquids on Graphite. Journal of Physical Chemistry C, 2019, 123, 11671-11676.	1.5	7
34	Negative Friction Coefficients in Superlubric Graphite–Hexagonal Boron Nitride Heterojunctions. Physical Review Letters, 2019, 122, 076102.	2.9	63
35	Single-molecule theory of enzymatic inhibition. Nature Communications, 2018, 9, 779.	5.8	64
36	Mechanisms of Electrotunable Friction in Friction Force Microscopy Experiments with Ionic Liquids. Journal of Physical Chemistry C, 2018, 122, 5004-5012.	1.5	25

#	Article	IF	CITATIONS
37	Atomic-scale sliding friction on a contaminated surface. Nanoscale, 2018, 10, 6375-6381.	2.8	26
38	Structural superlubricity and ultralow friction across the length scales. Nature, 2018, 563, 485-492.	13.7	382
39	Flatlands in the Holy Land: The Evolution of Layered Materials Research in Israel. Advanced Materials, 2018, 30, e1706581.	11.1	7
40	Life time of catch bond clusters. Physica A: Statistical Mechanics and Its Applications, 2018, 507, 398-405.	1.2	2
41	Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions. Nature Materials, 2018, 17, 894-899.	13.3	292
42	Nanoserpents: Graphene Nanoribbon Motion on Two-Dimensional Hexagonal Materials. Nano Letters, 2018, 18, 6009-6016.	4.5	104
43	Static friction boost in edge-driven incommensurate contacts. Physical Review Materials, 2018, 2, .	0.9	7
44	Electrotunable lubricity with ionic liquids: the influence of nanoscale roughness. Faraday Discussions, 2017, 199, 279-297.	1.6	20
45	Water in Ionic Liquid Lubricants: Friend and Foe. ACS Nano, 2017, 11, 6825-6831.	7.3	53
46	Sliding friction of graphene/hexagonal $\hat{a}\in$ boron nitride heterojunctions: a route to robust superlubricity. Scientific Reports, 2017, 7, 10851.	1.6	108
47	Nanotribology and voltage-controlled friction: general discussion. Faraday Discussions, 2017, 199, 349-376.	1.6	0
48	Electrovariable nanoplasmonics: general discussion. Faraday Discussions, 2017, 199, 603-613.	1.6	1
49	Multivalent Adhesion and Friction Dynamics Depend on Attachment Flexibility. Journal of Physical Chemistry C, 2017, 121, 15888-15896.	1.5	9
50	Electrotunable wetting, and micro- and nanofluidics: general discussion. Faraday Discussions, 2017, 199, 195-237.	1.6	2
51	Dependence of the Enzymatic Velocity on the Substrate Dissociation Rate. Journal of Physical Chemistry B, 2017, 121, 3437-3442.	1.2	18
52	Reply to 'On phonons and water flow enhancement in carbon nanotubes'. Nature Nanotechnology, 2017, 12, 1108-1108.	15.6	0
53	Effects of molecule anchoring and dispersion on nanoscopic friction under electrochemical control. Journal of Physics Condensed Matter, 2016, 28, 105001.	0.7	7
54	Observation of normal-force-independent superlubricity in mesoscopic graphite contacts. Physical Review B, 2016, 94, .	1.1	62

#	Article	IF	Citations
55	Unravelling the optical responses of nanoplasmonic mirror-on-mirror metamaterials. Physical Chemistry Chemical Physics, 2016, 18, 20486-20498.	1.3	18
56	Fundamentals and applications of self-assembled plasmonic nanoparticles at interfaces. Chemical Society Reviews, 2016, 45, 1581-1596.	18.7	99
57	Frictional Properties of Nanojunctions Including Atomically Thin Sheets. Nano Letters, 2016, 16, 1878-1883.	4.5	39
58	Friction and adhesion mediated by supramolecular host–guest complexes. Physical Chemistry Chemical Physics, 2016, 18, 9248-9254.	1.3	11
59	Single-Molecule Tribology: Force Microscopy Manipulation of a Porphyrin Derivative on a Copper Surface. ACS Nano, 2016, 10, 713-722.	7.3	40
60	Michaelis-Menten reaction scheme as a unified approach towards the optimal restart problem. Physical Review E, 2015, 92, 060101.	0.8	116
61	The breakdown of superlubricity by driving-induced commensurate dislocations. Scientific Reports, 2015, 5, 16134.	1.6	17
62	Electrotunable Lubricity with Ionic Liquid Nanoscale Films. Scientific Reports, 2015, 5, 7698.	1.6	87
63	Critical Length Limiting Superlow Friction. Physical Review Letters, 2015, 114, 055501.	2.9	51
64	Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction. Nature Nanotechnology, 2015, 10, 692-695.	15.6	142
65	Electrotunable Friction with Ionic Liquid Lubricants: How Important Is the Molecular Structure of the Ions?. Journal of Physical Chemistry Letters, 2015, 6, 3998-4004.	2.1	87
66	Diffusion through Bifurcations in Oscillating Nano- and Microscale Contacts: Fundamentals and Applications. Physical Review X , 2015, 5 , .	2.8	14
67	Nanoscopic Friction under Electrochemical Control. Physical Review Letters, 2014, 112, 055502.	2.9	16
68	Role of substrate unbinding in Michaelis–Menten enzymatic reactions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4391-4396.	3.3	205
69	Optical Properties of Ordered Self-Assembled Nanoparticle Arrays at Interfaces. Journal of Physical Chemistry C, 2014, 118, 23264-23273.	1.5	17
70	Friction through reversible jumps of surface atoms. Journal of Physics Condensed Matter, 2014, 26, 315005.	0.7	3
71	Friction on a Microstructured Elastomer Surface. Tribology Letters, 2013, 50, 3-15.	1.2	53
72	Self-Assembly of Nanoparticle Arrays for Use as Mirrors, Sensors, and Antennas. ACS Nano, 2013, 7, 9526-9532.	7.3	120

#	Article	IF	CITATIONS
73	<i>Colloquium</i> : Modeling friction: From nanoscale to mesoscale. Reviews of Modern Physics, 2013, 85, 529-552.	16.4	436
74	Observation of High-Speed Microscale Superlubricity in Graphite. Physical Review Letters, 2013, 110, 255504.	2.9	131
75	Two-Fluid Model for the Interpretation of Quartz Crystal Microbalance Response: Tuning Properties of Polymer Brushes with Solvent Mixtures. Journal of Physical Chemistry C, 2013, 117, 4533-4543.	1.5	25
76	Towards macroscale superlubricity. Nature Nanotechnology, 2013, 8, 893-894.	15.6	28
77	Probing and tuning frictional aging at the nanoscale. Scientific Reports, 2013, 3, 1896.	1.6	16
78	Formation and rupture of capillary bridges in atomic scale friction. Journal of Chemical Physics, 2012, 137, 164706.	1.2	23
79	Static friction and the dynamics of interfacial rupture. Physical Review B, 2012, 86, .	1.1	46
80	Voltage-dependent capacitance of metallic nanoparticles at a liquid/liquid interface. Physical Chemistry Chemical Physics, 2012, 14, 1371-1380.	1.3	11
81	Reflection of light by metal nanoparticles at electrodes. Physical Chemistry Chemical Physics, 2012, 14, 1850.	1.3	28
82	Slow Cracklike Dynamics at the Onset of Frictional Sliding. Physical Review Letters, 2011, 107, 235501.	2.9	56
83	Stabilizing Stick-Slip Friction. Physical Review Letters, 2011, 107, 024301.	2.9	46
84	A Model of Electrowetting, Reversed Electrowetting, and Contact Angle Saturation. Langmuir, 2011, 27, 6031-6041.	1.6	80
85	Accurate Quantification of Diffusion and Binding Kinetics of Nonâ€integral Membrane Proteins by FRAP. Traffic, 2011, 12, 1648-1657.	1.3	23
86	Slip Sequences in Laboratory Experiments Resulting from Inhomogeneous Shear as Analogs of Earthquakes Associated with a Fault Edge. Pure and Applied Geophysics, 2011, 168, 2151-2166.	0.8	27
87	Low friction and rotational dynamics of crystalline flakes in solid lubrication. Europhysics Letters, 2011, 95, 66002.	0.7	38
88	Electrovariable Nanoplasmonics and Self-Assembling Smart Mirrors. Journal of Physical Chemistry C, 2010, 114, 1735-1747.	1.5	43
89	Temperature Dependence of Friction at the Nanoscale: When the Unexpected Turns Normal. Tribology Letters, 2010, 39, 311-319.	1.2	43
90	New Trends in Nanotribology. Tribology Letters, 2010, 39, 227-227.	1.2	1

#	Article	IF	CITATIONS
91	Probing static disorder in Arrhenius kinetics by single-molecule force spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11336-11340.	3.3	65
92	Collapse Dynamics of Single Proteins Extended by Force. Biophysical Journal, 2010, 98, 2692-2701.	0.2	79
93	Hopping around an entropic barrier created by force. Biochemical and Biophysical Research Communications, 2010, 403, 133-137.	1.0	45
94	Electrowetting Dynamics Facilitated by Pulsing. Journal of Physical Chemistry C, 2010, 114, 22558-22565.	1.5	18
95	Multibond Dynamics of Nanoscale Friction: The Role of Temperature. Physical Review Letters, 2010, 104, 066104.	2.9	136
96	Ultra-Low-Voltage Electrowetting. Journal of Physical Chemistry C, 2010, 114, 14885-14890.	1.5	43
97	Temperature-Induced Enhancement of Nanoscale Friction. Physical Review Letters, 2009, 102, 136102.	2.9	59
98	Dynamics of Transition from Static to Kinetic Friction. Physical Review Letters, 2009, 103, 194301.	2.9	123
99	Nanoparticles at electrified liquid–liquid interfaces: new options for electro-optics. Faraday Discussions, 2009, 143, 109.	1.6	16
100	Single-Molecule Pulling Experiments: When the Stiffness of the Pulling Device Matters. Biophysical Journal, 2008, 95, L42-L44.	0.2	23
101	Torque and Twist against Superlubricity. Physical Review Letters, 2008, 100, 046102.	2.9	190
102	Giant Stark effect in quantum dots at liquid/liquid interfaces: A new option for tunable optical filters. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18212-18214.	3.3	29
103	Analyzing friction forces with the Jarzynski equality. Journal of Physics Condensed Matter, 2008, 20, 354008.	0.7	11
104	Effect of tip flexibility on stick–slip motion in friction force microscopy experiments. Journal of Physics Condensed Matter, 2008, 20, 354002.	0.7	19
105	Friction at the nanoscale. Journal of Physics Condensed Matter, 2008, 20, 350301.	0.7	1
106	The distinctive electrowetting properties of ITIES. Journal of Physics Condensed Matter, 2007, 19, 375113.	0.7	10
107	Manipulating Single Enzymes by an External Harmonic Force. Physical Review Letters, 2007, 98, 168302.	2.9	20
108	Light-driven molecular machine at ITIES. Journal of Physics Condensed Matter, 2007, 19, 375111.	0.7	6

#	Article	IF	Citations
109	Functionalized Liquid–Liquid Interfaces. Journal of Physics Condensed Matter, 2007, 19, 370301.	0.7	2
110	Mesoscale Engines by Nonlinear Friction. Nano Letters, 2007, 7, 837-842.	4.5	20
111	The effect of lateral vibrations on transport and friction in nanoscale contacts. Tribology International, 2007, 40, 967-972.	3.0	8
112	Principles of electrowetting with two immiscible electrolytic solutions. Journal of Physics Condensed Matter, 2006, 18, 2837-2869.	0.7	23
113	The escape of a particle from a driven harmonic potential to an attractive surface. Journal of Chemical Physics, 2006, 125, 204705.	1.2	3
114	Electrowetting with Electrolytes. Physical Review Letters, 2006, 97, 136102.	2.9	53
115	ITIES fluctuations induced by easily transferable ions. Chemical Physics, 2005, 319, 253-260.	0.9	9
116	Saltatory drift in a randomly driven two-wave potential. Journal of Physics Condensed Matter, 2005, 17, S3697-S3707.	0.7	7
117	Actin-based motility: cooperative symmetry-breaking and phases of motion. Journal of Physics Condensed Matter, 2005, 17, S3929-S3944.	0.7	2
118	Molecular motor with a built-in escapement device. Europhysics Letters, 2004, 68, 26-32.	0.7	17
119	The nonlinear nature of friction. Nature, 2004, 430, 525-528.	13.7	610
120	Surface tension and ion transfer across the interface of two immiscible electrolytes. Electrochemistry Communications, 2004, 6, 693-699.	2.3	12
121	Direct energy transfer at electrified liquid–liquid interfaces: a way to study interface morphology on mesoscopic scales. Electrochemistry Communications, 2004, 6, 703-707.	2.3	5
122	Some new aspects of LÃ $\mathbb O$ vy walks and flights: directed transport, manipulation through flights and population exchange. Physica D: Nonlinear Phenomena, 2004, 187, 89-99.	1.3	5
123	Following Single Molecules by Force Spectroscopy. Israel Journal of Chemistry, 2004, 44, 363-372.	1.0	2
124	Dynamic Force Spectroscopy: Effect of Thermal Fluctuations on Friction and Adhesion. ACS Symposium Series, 2004, , 29-40.	0.5	0
125	Friction through Dynamical Formation and Rupture of Molecular Bonds. Physical Review Letters, 2004, 92, 135503.	2.9	198
126	Surface Polaron Effect on the Ion Transfer across the Interface of Two Immiscible Electrolytes. Russian Journal of Electrochemistry, 2003, 39, 119-125.	0.3	1

#	Article	IF	CITATIONS
127	Manipulations of Individual Molecules by Scanning Probes. Nano Letters, 2003, 3, 795-798.	4.5	6
128	The Quartz Crystal Microbalance as a Tool for the Study of a "Liquidlike Layer―at the Ice/Metal Interface. Journal of Physical Chemistry B, 2003, 107, 12485-12491.	1.2	20
129	Molecular pumping and separation in a symmetric channel. Materials Research Society Symposia Proceedings, 2003, 790, 1.	0.1	0
130	Dynamical Heat Channels. Physical Review Letters, 2003, 91, 194301.	2.9	87
131	Beyond the conventional description of dynamic force spectroscopy of adhesion bonds. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11378-11381.	3.3	251
132	Statistical Mechanics of Static and Low-Velocity Kinetic Friction. Advances in Chemical Physics, 2003, , 187-272.	0.3	127
133	Inverted stick–slip friction: What is the mechanism?. Journal of Chemical Physics, 2002, 116, 6871-6874.	1.2	15
134	Influence of Roughness on the Admittance of the Quartz Crystal Microbalance Immersed in Liquids. Analytical Chemistry, 2002, 74, 554-561.	3.2	157
135	Control of friction by shear induced phase transitions. Physical Review B, 2002, 66, .	1.1	6
136	Coupled ion–interface dynamics and ion transfer across the interface of two immiscible liquids. Journal of Chemical Physics, 2002, 117, 6766-6779.	1.2	37
137	DC currents in Hamiltonian systems by Lévy flights. Physica D: Nonlinear Phenomena, 2002, 170, 131-142.	1.3	43
138	Dynamic force spectroscopy: a Fokker–Planck approach. Chemical Physics Letters, 2002, 352, 499-504.	1.2	91
139	Chemical Control of Friction: Mixed Lubricant Monolayers. Tribology Letters, 2002, 12, 217-227.	1.2	12
140	Confined Molecules under Shear: From a Microscopic Description to Phenomenology. Physical Review Letters, 2001, 87, 275506.	2.9	27
141	Slippage at adsorbate–electrolyte interface. Response of electrochemical quartz crystal microbalance to adsorption. Electrochimica Acta, 2000, 45, 3615-3621.	2.6	52
142	Macroscopic versus microscopic description of friction: from Tomlinson model to shearons. Tribology Letters, 2000, 9, 45-54.	1.2	14
143	Embedded systems under shear: Relationship between shear-induced modes and frictional behavior. Europhysics Letters, 2000, 50, 326-332.	0.7	10
144	Molecular Motor that Never Steps Backwards. Physical Review Letters, 2000, 85, 491-494.	2.9	52

#	Article	IF	CITATIONS
145	Atomic Scale Engines: Cars and Wheels. Physical Review Letters, 2000, 84, 6058-6061.	2.9	120
146	Looking at Friction through "Shearonsâ€â€. Journal of Physical Chemistry B, 2000, 104, 3791-3794.	1.2	5
147	Frictional forces in an electrolytic environment. Physical Review E, 1999, 59, 1921-1931.	0.8	11
148	Deducing energy dissipation from rheological response. Journal of Chemical Physics, 1999, 110, 1263-1266.	1.2	4
149	Modifying Friction by Manipulating Normal Response to Lateral Motion. Physical Review Letters, 1999, 82, 4823-4826.	2.9	85
150	Atomic scale friction: from basic characteristics to control. Physica A: Statistical Mechanics and Its Applications, 1999, 266, 272-279.	1.2	1
151	The effect of electric field on capillary waves at the interface of two immiscible electrolytes. Chemical Physics Letters, 1999, 309, 137-142.	1.2	9
152	Effect of capillary waves on the double layer capacitance of the interface between two immiscible electrolytes. Electrochimica Acta, 1999, 45, 685-690.	2.6	10
153	Stick–slip dynamics of interfacial friction. Physica A: Statistical Mechanics and Its Applications, 1998, 249, 184-189.	1.2	19
154	Atomic Scale Friction and Different Phases of Motion of Embedded Molecular Systems. Journal of Physical Chemistry B, 1998, 102, 7924-7930.	1.2	53
155	Controlling chaotic frictional forces. Physical Review E, 1998, 57, 7340-7343.	0.8	56
156	Atomic Scale Friction: What can be Deduced from the Response to a Harmonic Drive?. Physical Review Letters, 1998, 81, 1227-1230.	2.9	39
157	Nonlinear Poisson–Boltzmann theory of a double layer at a rough metal/electrolyte interface: A new look at the capacitance data on solid electrodes. Journal of Chemical Physics, 1998, 108, 1715-1723.	1.2	56
158	Extended Tomlinson Model for Rheological Response. Materials Research Society Symposia Proceedings, 1998, 543, 69.	0.1	0
159	Stick-slip dynamics as a probe of frictional forces. Europhysics Letters, 1997, 39, 183-188.	0.7	54
160	Double layer capacitance on a rough metal surface: Surface roughness measured by "Debye ruler― Electrochimica Acta, 1997, 42, 2853-2860.	2.6	64
161	Double-layer capacitance on a rough metal surface. Physical Review E, 1996, 53, 6192-6199.	0.8	90
162	Effect of Surface Film Structure on the Quartz Crystal Microbalance Response in Liquids. Langmuir, 1996, 12, 6354-6360.	1.6	104

#	Article	IF	CITATIONS
163	Chaos and Force Fluctuations in Frictional Dynamics. Materials Research Society Symposia Proceedings, 1996, 464, 53.	0.1	O
164	Dynamics of molecules near interfaces. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 102, 29-33.	2.0	2
165	Stick-Slip Motion and Force Fluctuations in a Driven Two-Wave Potential. Physical Review Letters, 1996, 77, 683-686.	2.9	117
166	Origin of stick-slip motion in a driven two-wave potential. Physical Review E, 1996, 54, 6485-6494.	0.8	58
167	Dynamics of confined liquids under shear. Physical Review E, 1995, 51, 2137-2141.	0.8	32
168	Sheared liquids in the nanoscale range. Journal of Chemical Physics, 1995, 103, 10707-10713.	1.2	22
169	Velocity Profiles and the Brinkman Equation in Nanoscale Confined Liquids. Europhysics Letters, 1995, 32, 125-130.	0.7	11
170	Behavior of Quartz Crystal Microbalance in Nonadsorbed Gases at High Pressures. Langmuir, 1995, 11, 674-678.	1.6	40
171	Electron tunneling through a dielectric barrier. Journal of Chemical Physics, 1994, 101, 8224-8237.	1.2	8
172	Roughness effect on the frictional force in boundary lubrication. Physical Review E, 1994, 49, 1424-1429.	0.8	27
173	Roughness effect on the frequency of a quartz-crystal resonator in contact with a liquid. Physical Review B, 1994, 49, 4866-4870.	1.1	102
174	Influence of the Surface Morphology on the Quartz Crystal Microbalance Response in a Fluid. Langmuir, 1994, 10, 2836-2841.	1.6	110
175	Frictional Forces in Thin Liquid Films. Materials Research Society Symposia Proceedings, 1994, 366, 129.	0.1	1
176	Electronic distribution and second-harmonic generation at the metal-electrolyte interface. Physical Review B, 1993, 47, 6644-6650.	1.1	29
177	Ion emission from ferroelectric media. Journal of Applied Physics, 1992, 72, 1952-1954.	1.1	4
178	Theory of second-harmonic generation at the metal-electrolyte interface. Physical Review B, 1992, 45, 9339-9346.	1.1	43
179	Interface Effect on Dipole-Dipole Interaction. Materials Research Society Symposia Proceedings, 1992, 290, 209.	0.1	0
180	Dielectric Friction in Restricted Geometries. Materials Research Society Symposia Proceedings, 1991, 248, 513.	0.1	0

#	Article	IF	CITATIONS
181	Optical Response of Rough Metal Surfaces and Island Films. Materials Research Society Symposia Proceedings, 1991, 253, 451.	0.1	0