
## Sang-Soo Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/429145/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Plasma-Assisted Mechanochemistry to Covalently Bond Ion-Conducting Polymers to Ni-Rich Cathode<br>Materials for Improved Cyclic Stability and Rate Capability. ACS Applied Energy Materials, 2022, 5,<br>4808-4816.        | 5.1  | 4         |
| 2  | Thermally stable and highly recyclable carbon fiber-reinforced polyketone composites based on<br>mechanochemical bond formation. Composites Part A: Applied Science and Manufacturing, 2021, 142,<br>106251.               | 7.6  | 9         |
| 3  | Mixed urushiol and laccol compositions in natural lacquers: Convenient evaluation method and its<br>effect on the physicochemical properties of lacquer coatings. Progress in Organic Coatings, 2021, 154,<br>106195.      | 3.9  | 9         |
| 4  | Carbon fiber-reinforced polyamide composites with efficient stress transfer via plasma-assisted mechanochemistry. Composites Part C: Open Access, 2021, 6, 100209.                                                         | 3.2  | 2         |
| 5  | Highly sustainable polyphenylene sulfide membrane of tailored porous architecture for<br>high-performance lithium-ion battery applications. Materials Today Advances, 2021, 12, 100186.                                    | 5.2  | 5         |
| 6  | Flexible/Stretchable Supercapacitors with Novel Functionality for Wearable Electronics. Advanced<br>Materials, 2020, 32, e2002180.                                                                                         | 21.0 | 236       |
| 7  | Ecofriendly Catechol Lipid Bioresin for Low-Temperature Processed Electrode Patterns with Strong<br>Durability. ACS Applied Materials & Interfaces, 2020, 12, 16864-16876.                                                 | 8.0  | 15        |
| 8  | Stretchable Lithium-Ion Battery Based on Re-entrant Micro-honeycomb Electrodes and Cross-Linked<br>Gel Electrolyte. ACS Nano, 2020, 14, 3660-3668.                                                                         | 14.6 | 74        |
| 9  | Stretchable Conductive Adhesives with Superior Electrical Stability as Printable Interconnects in Washable Textile Electronics. ACS Applied Materials & Interfaces, 2019, 11, 37043-37050.                                 | 8.0  | 35        |
| 10 | Highly aligned and porous reduced graphene oxide structures and their application for stretchable conductors. Journal of Industrial and Engineering Chemistry, 2019, 80, 385-391.                                          | 5.8  | 2         |
| 11 | Highly improved interfacial affinity in carbon fiber-reinforced polymer composites via oxygen and<br>nitrogen plasma-assisted mechanochemistry. Composites Part B: Engineering, 2019, 165, 725-732.                        | 12.0 | 54        |
| 12 | Plasma-assisted mechanochemistry to produce polyamide/boron nitride nanocomposites with high thermal conductivities and mechanical properties. Composites Part B: Engineering, 2019, 164, 710-719.                         | 12.0 | 40        |
| 13 | Resistance Switching Capable Polymer Nanocomposites Employing Networks of One-Dimensional<br>Nanocarbon Wrapped by TiO2 Conformal Layer. IEEE Nanotechnology Magazine, 2018, 17, 567-573.                                  | 2.0  | 1         |
| 14 | Highly thermally conductive and mechanically robust polyamide/graphite nanoplatelet composites via<br>mechanochemical bonding techniques with plasma treatment. Composites Science and Technology,<br>2018, 160, 245-254.  | 7.8  | 35        |
| 15 | Highly Conductive, Stretchable, and Transparent PEDOT:PSS Electrodes Fabricated with Triblock<br>Copolymer Additives and Acid Treatment. ACS Applied Materials & Interfaces, 2018, 10, 28027-28035.                        | 8.0  | 111       |
| 16 | Implication of controlled embedment of graphite nanoplatelets assisted by mechanochemical<br>treatment for electro-conductive polyketone composite. Journal of Industrial and Engineering<br>Chemistry, 2018, 66, 356-361. | 5.8  | 13        |
| 17 | 2D reentrant auxetic structures of graphene/CNT networks for omnidirectionally stretchable supercapacitors. Nanoscale, 2017, 9, 13272-13280.                                                                               | 5.6  | 73        |
| 18 | Controllable Formation of Nanofilaments in Resistive Memories via Tipâ€Enhanced Electric Fields.<br>Advanced Electronic Materials, 2016, 2, 1600233.                                                                       | 5.1  | 88        |

SANG-SOO LEE

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Highly stretchable dielectric nanocomposites based on single-walled carbon nanotube/ionic liquid gels. Composites Science and Technology, 2013, 83, 40-46.                                                 | 7.8 | 40        |
| 20 | Acid-treated SWCNT/polyurethane nanoweb as a stretchable and transparent Conductor. RSC Advances, 2012, 2, 10717.                                                                                          | 3.6 | 29        |
| 21 | One-Dimensional TiO2@Ag Nanoarchitectures with Interface-Mediated Implementation of<br>Resistance-Switching Behavior in Polymer Nanocomposites. ACS Applied Materials & Interfaces,<br>2012, 4, 5727-5731. | 8.0 | 18        |