Lawrence K Cormack

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4291128/publications.pdf

Version: 2024-02-01

759233 580821 38 700 12 25 citations h-index g-index papers 39 39 39 494 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effects of endocrineâ€disrupting chemicals on hypothalamic oxytocin and vasopressin systems. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2022, 337, 75-87.	1.9	10
2	Recent understanding of binocular vision in the natural environment with clinical implications. Progress in Retinal and Eye Research, 2022, 88, 101014.	15.5	6
3	Contributed Session III: Target tracking shows that millisecond-scale visual delays are faithfully preserved in the movement of the hand. Journal of Vision, 2022, 22, 31.	0.3	O
4	Stereo slant discrimination of planar 3D surfaces: Frontoparallel versus planar matching. Journal of Vision, 2022, 22, 6.	0.3	3
5	Spatiotemporal integration of isolated binocular three-dimensional motion cues. Journal of Vision, 2021, 21, 2.	0.3	1
6	Eccentricity Dependence of Motion Induced Position Shifts Revealed by Continuous Motion Nulling. Journal of Vision, 2021, 21, 2414.	0.3	0
7	Eye-specific pattern-motion signals support the perception of three-dimensional motion. Journal of Vision, 2019, 19, 27.	0.3	1
8	Continuous Tracking of Motion Induced Position Shifts. Journal of Vision, 2019, 19, 92.	0.3	O
9	Dynamics of Motion Induced Position Shifts Revealed by Continuous Tracking. Journal of Vision, 2019, 19, 294c.	0.3	3
10	Stereo Slant Estimation of Planar Surfaces: Standard Cross-Correlation vs. Planar-Correlation. Journal of Vision, 2018, 18, 132.	0.3	O
11	Negative Affectâ€Associated <scp>USV</scp> Acoustic Characteristics Predict Future Excessive Alcohol Drinking and Alcohol Avoidance in Male P and <scp>NP</scp> Rats. Alcoholism: Clinical and Experimental Research, 2017, 41, 786-797.	2.4	10
12	Daily consumption of methylene blue reduces attentional deficits and dopamine reduction in a 6-OHDA model of Parkinson's disease. Neuroscience, 2017, 359, 8-16.	2.3	12
13	Binocular Mechanisms of 3D Motion Processing. Annual Review of Vision Science, 2017, 3, 297-318.	4.4	33
14	Dynamic mechanisms of visually guided 3D motion tracking. Journal of Neurophysiology, 2017, 118, 1515-1531.	1.8	23
15	Reconsolidation-Extinction Interactions in Fear Memory Attenuation: The Role of Inter-Trial Interval Variability. Frontiers in Behavioral Neuroscience, 2017, 11, 2.	2.0	8
16	Bayesian depth estimation from monocular natural images. Journal of Vision, 2017, 17, 22.	0.3	8
17	Separate Perceptual and Neural Processing of Velocity- and Disparity-Based 3D Motion Signals. Journal of Neuroscience, 2016, 36, 10791-10802.	3.6	13
18	Eccentricity effect of motion silencing on naturalistic videos. , 2015, , .		6

#	Article	IF	CITATIONS
19	A Distinct Mechanism of Temporal Integration for Motion through Depth. Journal of Neuroscience, 2015, 35, 10212-10216.	3.6	21
20	New bivariate statistical model of natural image correlations. , 2014, , .		1
21	Visibility prediction of flicker distortions on naturalistic videos. , 2014, , .		1
22	Area MT Encodes Three-Dimensional Motion. Journal of Neuroscience, 2014, 34, 15522-15533.	3.6	68
23	Distortion conspicuity on stereoscopically viewed 3D images may correlate to scene content and distortion type. Journal of the Society for Information Display, 2013, 21, 491-503.	2.1	7
24	Depth estimation from monocular color images using natural scene statistics models. , 2013, , .		4
25	Full-reference quality assessment of stereoscopic images by modeling binocular rivalry. , 2012, , .		11
26	To CD or not to CD: Is there a 3D motion aftereffect based on changing disparities?. Journal of Vision, 2012, 12, 7-7.	0.3	9
27	Automatic prediction of saliency on JPEG distorted images. , 2011, , .		5
28	Three-dimensional motion aftereffects reveal distinct direction-selective mechanisms for binocular processing of motion through depth. Journal of Vision, 2011, 11, 18-18.	0.3	24
29	Speed and Eccentricity Tuning Reveal a Central Role for the Velocity-Based Cue to 3D Visual Motion. Journal of Neurophysiology, 2010, 104, 2886-2899.	1.8	42
30	Active, Foveated, Uncalibrated Stereovision. International Journal of Computer Vision, 2009, 85, 192-207.	15.6	9
31	Disparity- and velocity-based signals for three-dimensional motion perception in human MT+. Nature Neuroscience, 2009, 12, 1050-1055.	14.8	104
32	Stereoscopic Phase-Differencing: Multiscale Synthesis. , 2008, , .		1
33	Strong percepts of motion through depth without strong percepts of position in depth. Journal of Vision, 2008, 8, 6.	0.3	44
34	Epipolar Spaces for Active Binocular Vision Systems. , 2007, , .		1
35	Epipolar Spaces and Optimal Sampling Strategies. , 2007, , .		0
36	Asymmetries and errors in perception of depth from disparity suggest a multicomponent model of disparity processing. Perception & Psychophysics, 1997, 59, 219-231.	2.3	32

#	Article	lF	CITATIONS
37	Disparity-tuned channels of the human visual system. Visual Neuroscience, 1993, 10, 585-596.	1.0	42
38	Interocular correlation, luminance contrast and cyclopean processing. Vision Research, 1991, 31, 2195-2207.	1.4	132