
Elżbieta Klewicka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4290766/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Algae in food: a general review. Critical Reviews in Food Science and Nutrition, 2019, 59, 3538-3547.	5.4	152
2	The structure, occurrence and biological activity of ellagitannins: a general review. Acta Scientiarum Polonorum, Technologia Alimentaria, 2014, 13, 289-299.	0.2	143
3	Matrix Effects on the Stability and Antioxidant Activity of Red Cabbage Anthocyanins under Simulated Gastrointestinal Digestion. BioMed Research International, 2014, 2014, 1-11.	0.9	63
4	The influence of lactic acid fermentation process of red beet juice on the stability of biologically active colorants. European Food Research and Technology, 2006, 223, 110-116.	1.6	59
5	Exopolysaccharides produced byLactobacillussp.: Biosynthesis and applications. Critical Reviews in Food Science and Nutrition, 2016, 58, 1-13.	5.4	59
6	Polyphenols, vitamin C and antioxidant activity in wines from Rosa canina L. and Rosa rugosa Thunb Journal of Food Composition and Analysis, 2015, 39, 62-68.	1.9	51
7	Mutual influence of polyphenols and Lactobacillus spp. bacteria in food: a review. European Food Research and Technology, 2021, 247, 9-24.	1.6	45
8	Probiotic Lactobacillus strains: in vitro and in vivo studies. Folia Microbiologica, 2009, 54, 533-537.	1.1	40
9	Effect of lactobacillus fermented beetroot juice on composition and activity of cecal microflora of rats. European Food Research and Technology, 2009, 229, 153-157.	1.6	40
10	Ellagitannins from Raspberry (Rubus idaeus L.) Fruit as Natural Inhibitors of Geotrichum candidum. Molecules, 2016, 21, 908.	1.7	34
11	Antagonistic activity of lactic acid bacteria as probiotics against selected bacteria of the Enterobaceriacae family in the presence of polyols and their galactosyl derivatives. Biotechnology Letters, 2004, 26, 317-320.	1.1	33
12	Ellagitannins from <i>Rubus idaeus</i> L. Exert Geno- and Cytotoxic Effects against Human Colon Adenocarcinoma Cell Line Caco-2. Journal of Agricultural and Food Chemistry, 2017, 65, 2947-2955.	2.4	30
13	Exopolysaccharides production by Lactobacillus rhamnosus strains – Optimization of synthesis and extraction conditions. LWT - Food Science and Technology, 2020, 122, 109055.	2.5	30
14	Lactic acid fermentation of legume seed sprouts as a method of increasing the content of isoflavones and reducing microbial contamination. Food Chemistry, 2019, 285, 478-484.	4.2	29
15	Optimization of Media Composition to Maximize the Yield of Exopolysaccharides Production by Lactobacillus rhamnosus Strains. Probiotics and Antimicrobial Proteins, 2020, 12, 774-783.	1.9	29
16	Impact of heat-inactivated Lactobacillus casei and Lactobacillus paracasei strains on cytokine responses in whole blood cell cultures of children with atopic dermatitis. Folia Microbiologica, 2010, 55, 277-280.	1.1	26
17	Physicochemical, antioxidant, DNA cleaving properties and antimicrobial activity of fisetin-copper chelates. Journal of Inorganic Biochemistry, 2018, 180, 101-118.	1.5	25
18	Antifungal Activity of Lactobacillus pentosus ÅOCK 0979 in the Presence of Polyols and Galactosyl-Polyols. Probiotics and Antimicrobial Proteins, 2018, 10, 186-200.	1.9	22

Ειżβιετα Κιεωιςκα

#	Article	IF	CITATIONS
19	Protective effect of lactofermented red beetroot juice against aberrant crypt foci formation, genotoxicity of fecal water and oxidative stress induced by 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine in rats model. Environmental Toxicology and Pharmacology, 2012, 34, 895-904.	2.0	21
20	Chelating ability and biological activity of hesperetin Schiff base. Journal of Inorganic Biochemistry, 2015, 143, 34-47.	1.5	21
21	Antifungal Activity of <i>Lactobacillus</i> sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol. BioMed Research International, 2016, 2016, 1-8.	0.9	21
22	Influence of the Microalga Chlorella vulgaris on the Growth and Metabolic Activity of Lactobacillus spp. Bacteria. Foods, 2020, 9, 959.	1.9	21
23	Coordination ability and biological activity of a naringenin thiosemicarbazone. Journal of Inorganic Biochemistry, 2016, 165, 36-48.	1.5	20
24	Changes in Gut Microbiota in Children with Atopic Dermatitis Administered the Bacteria Lactobacillus casei DN – 114001. Polish Journal of Microbiology, 2011, 60, 329-333.	0.6	20
25	Anticandidal activity of Lactobacillus spp. in the presence of galactosyl polyols. Microbiological Research, 2020, 240, 126540.	2.5	18
26	Biological Stability of Lacto-Fermented Beetroot Juice During Refrigerated Storage. Polish Journal of Food and Nutrition Sciences, 2011, 61, 251-256.	0.6	17
27	Lactic Acid Fermentation of Red Beet Juice Supplemented with Waste Highbush Blueberry-Sucrose Osmotic Syrup as a Method of Probiotic Beverage Production. Journal of Food Processing and Preservation, 2016, 40, 780-789.	0.9	17
28	Protective effect of lactofermented beetroot juice against aberrant crypt foci formation and genotoxicity of fecal water in rats. Experimental and Toxicologic Pathology, 2012, 64, 599-604.	2.1	16
29	Effects of Lactofermented Beetroot Juice Alone or with N-nitroso-N-methylurea on Selected Metabolic Parameters, Composition of the Microbiota Adhering to the Gut Epithelium and Antioxidant Status of Rats. Nutrients, 2015, 7, 5905-5915.	1.7	16
30	Effect of Lactobacillus casei DN-114001 Application on the Activity of Fecal Enzymes in Children After Liver Transplantation. Transplantation Proceedings, 2007, 39, 3219-3221.	0.3	15
31	Fermentation of beet juice by bacteria of genus Lactobacillus sp European Food Research and Technology, 2004, 218, 178-183.	1.6	14
32	Adherence of probiotic bacteria to human colon epithelial cells and inhibitory effect against enteric pathogens – <i>In vitro</i> study. International Journal of Dairy Technology, 2016, 69, 532-539.	1.3	14
33	Innovative fermented soya drink with the microalgae Chlorella vulgaris and the probiotic strain Levilactobacillus brevis ÅOCK 0944. LWT - Food Science and Technology, 2021, 151, 112131.	2.5	14
34	Influence of Freeze-Dried Phenolic-Rich Plant Powders on the Bioactive Compounds Profile, Antioxidant Activity and Aroma of Different Types of Chocolates. Molecules, 2021, 26, 7058.	1.7	11
35	Rosa spp. Extracts as a Factor That Limits the Growth of Staphylococcus spp. Bacteria, a Food Contaminant. Molecules, 2021, 26, 4590.	1.7	10
36	Antifungal activity of lactic acid bacteria of genus <i>Lactobacillus</i> sp. In the presence of polyols. Acta Alimentaria, 2007, 36, 495-499.	0.3	9

Elżbieta Klewicka

#	Article	IF	CITATIONS
37	Capsular Polysaccharides of Lactobacillus spp.: Theoretical and Practical Aspects of Simple Visualization Methods. Probiotics and Antimicrobial Proteins, 2017, 9, 425-434.	1.9	9
38	The potential of new bionic acids as prebiotics and antimicrobials. LWT - Food Science and Technology, 2020, 125, 109246.	2.5	9
39	Synthesis of Galactosyl Mannitol Derivative Using β-Galactosidase from Kluyveromyces lactis. Polish Journal of Food and Nutrition Sciences, 2017, 67, 33-39.	0.6	8
40	Synthesis of Galactosyl Derivative of Gluconic Acid with Transglycosylation Activity of β-galactosidase. Food Technology and Biotechnology, 2017, 55, 258-265.	0.9	8
41	Osmotic Concentration of Gooseberry Fruits – The Influence of Temperature, Time and Pretreatment Methods on Mass Transfer and Total Polyphenol and Organic Acid Content. Food Technology and Biotechnology, 2014, 52, 411-419.	0.9	7
42	Infl uence of thermal treatment on the stability of phenolic compounds and the microbiological quality of sucrose solution following osmotic dehydration of highbush blueberry fruits. Acta Scientiarum Polonorum, Technologia Alimentaria, 2014, 13, 79-88.	0.2	6
43	Changes in gut microbiota in children with atopic dermatitis administered the bacteria Lactobacillus casei DN114001. Polish Journal of Microbiology, 2011, 60, 329-33.	0.6	6
44	The antimycotic effect of ellagitannins from raspberry (Rubus idaeus L.) on Alternaria alternata ÅOCK 0409. European Food Research and Technology, 2020, 246, 1341-1349.	1.6	4
45	WpÅ,yw polifenoli z wytÅ,oków z pseudoowoców Rosa rugosa Thunb. na wzrost bakterii z rodzaju Lactobacillus. Żywność, 2019, 120, 73-87.	0.2	4
46	Antifungal activity of lactic acid bacteria of Lactobacillus genus. Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality, 2016, 104, 17-31.	0.1	3
47	Antagonistic Activity of Lactic Acid Bacteria and Rosa rugosa Thunb. Pseudo-Fruit Extracts against Staphylococcus spp. Strains. Applied Sciences (Switzerland), 2022, 12, 4005.	1.3	3
48	BETACYANINS – BIOAVAILABILITY AND BIOLOGICAL ACTIVITY. Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality, 2012, , .	0.1	2
49	Effects of Probiotic Preparation on Metabolic Activity of Enteric Microbiota in Children with Atopic Dermatitis. Biotechnology and Biotechnological Equipment, 2009, 23, 885-887.	0.5	1
50	From the Physicochemical Characteristic of Novel Hesperetin Hydrazone to Its In Vitro Antimicrobial Aspects. Molecules, 2022, 27, 845.	1.7	1
51	ASSESSING SURVIVAL OF LACTOBACILLUS BACTERIA CONTAINED IN PROBIOTIC PREPARATION DURING PASSAGE IN A SIMULATED GASTROINTESTINAL TRACT. Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality, 2014, , .	0.1	0
52	WpÅ,yw alg Chlorella vulgaris na przeżywalność bakterii Lactobacillus brevis w obecnoÅ›ci wysokich stęż chlorku sodu. Å»ywnoÅ›A‡, 2019, 120, 88-96.	∕4eÅ 0.2	0
53	Selekcja bakterii z rodzaju Lactobacillus sp. wydajnych w syntezie egzopolisacharydów. Żywność, 2017, 111, 130-139.	0.2	0
54	Enzymatic Synthesis of the Fructosyl Derivative of Sorbitol. Processes, 2022, 10, 594.	1.3	0