
## Jochem B Evers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4289798/publications.pdf

Version: 2024-02-01



| # | Article                                                                                                                                                                                                                                                                                                                    | IF        | CITATIONS    |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|
| 1 | Functional–structural plant modelling: a new versatile tool in crop science. Journal of Experimental<br>Botany, 2010, 61, 2101-2115.                                                                                                                                                                                       | 2.4       | 434          |
| 2 | Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C <sub>3</sub> photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat ( <i>Triticum aestivum</i> ) canopy. Plant, Cell and Environment, 2009, 32, 448-464. | 2.8       | 201          |
| 3 | Cessation of Tillering in Spring Wheat in Relation to Light Interception and Red : Far-red Ratio. Annals of Botany, 2006, 97, 649-658.                                                                                                                                                                                     | 1.4       | 168          |
| 4 | The contribution of phenotypic plasticity to complementary light capture in plant mixtures. New Phytologist, 2015, 207, 1213-1222.                                                                                                                                                                                         | 3.5       | 143          |
| 5 | Neighbor detection at the leaf tip adaptively regulates upward leaf movement through spatial auxin<br>dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114,<br>7450-7455.                                                                                                  | 3.3       | 118          |
| 6 | Simulation of wheat growth and development based on organ-level photosynthesis and assimilate allocation. Journal of Experimental Botany, 2010, 61, 2203-2216.                                                                                                                                                             | 2.4       | 111          |
| 7 | Optimizing soaking and germination conditions to improve gamma-aminobutyric acid content in japonica and indica germinated brown rice. Journal of Functional Foods, 2014, 10, 283-291.                                                                                                                                     | 1.6       | 108          |
| 8 | Towards a generic architectural model of tillering in Gramineae, as exemplified by spring wheat () Tj ETQq0 0 0 r                                                                                                                                                                                                          | gBT_/Over | ock 10 Tf 50 |

| 9  | Understanding shoot branching by modelling form and function. Trends in Plant Science, 2011, 16, 464-467.                                                                                  | 4.3 | 96 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 10 | Maize yield and quality in response to plant density and application of a novel plant growth regulator. Field Crops Research, 2014, 164, 82-89.                                            | 2.3 | 94 |
| 11 | Plant neighbor detection through touching leaf tips precedes phytochrome signals. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14705-14710. | 3.3 | 89 |
| 12 | Current knowledge and future research opportunities for modeling annual crop mixtures. A review.<br>Agronomy for Sustainable Development, 2019, 39, 1.                                     | 2.2 | 87 |
| 13 | Managing mepiquat chloride and plant density for optimal yield and quality of cotton. Field Crops<br>Research, 2013, 149, 1-10.                                                            | 2.3 | 85 |

Simulating the effects of localized red:farâ€red ratio on tillering in spring wheat (<i>Triticum) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 222

| 15 | An architectural model of spring wheat: Evaluation of the effects of population density and shading on model parameterization and performance. Ecological Modelling, 2007, 200, 308-320. | 1.2 | 65 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 16 | Mixing trees and crops increases land and water use efficiencies in a semi-arid area. Agricultural<br>Water Management, 2016, 178, 281-290.                                              | 2.4 | 62 |
| 17 | Yield components and quality of intercropped cotton in response to mepiquat chloride and plant density. Field Crops Research, 2015, 179, 63-71.                                          | 2.3 | 56 |
| 18 | Simulation of the threeâ€dimensional distribution of the red:farâ€red ratio within crop canopies. New Phytologist, 2007, 176, 223-234.                                                   | 3.5 | 54 |

JOCHEM B EVERS

| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Understanding and optimizing species mixtures using functional–structural plant modelling. Journal of Experimental Botany, 2019, 70, 2381-2388.                             | 2.4 | 54        |
| 20 | Plant density affects light interception and yield in cotton grown as companion crop in young jujube plantations. Field Crops Research, 2014, 169, 132-139.                 | 2.3 | 53        |
| 21 | Plasticity of seed weight compensates reductions in seed number of oilseed rape in response to shading at flowering. European Journal of Agronomy, 2017, 84, 113-124.       | 1.9 | 52        |
| 22 | Border-row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping. Field Crops Research, 2020, 253, 107819.       | 2.3 | 51        |
| 23 | Early competition shapes maize whole-plant development in mixed stands. Journal of Experimental<br>Botany, 2014, 65, 641-653.                                               | 2.4 | 50        |
| 24 | Quantifying the effect of crop spatial arrangement on weed suppression using functional-structural plant modelling. Journal of Plant Research, 2016, 129, 339-351.          | 1.2 | 44        |
| 25 | Intercropping potato (Solanum tuberosum L.) with hairy vetch (Vicia villosa) increases water use efficiency in dry conditions. Field Crops Research, 2019, 240, 168-176.    | 2.3 | 43        |
| 26 | Resource use efficiency, ecological intensification and sustainability of intercropping systems.<br>Journal of Integrative Agriculture, 2015, 14, 1542-1550.                | 1.7 | 42        |
| 27 | Modelling the structural response of cotton plants to mepiquat chloride and population density.<br>Annals of Botany, 2014, 114, 877-887.                                    | 1.4 | 41        |
| 28 | Dynamic Plant–Plant–Herbivore Interactions Govern Plant Growth–Defence Integration. Trends in<br>Plant Science, 2017, 22, 329-337.                                          | 4.3 | 40        |
| 29 | Subtle variation in shade avoidance responses may have profound consequences for plant competitiveness. Annals of Botany, 2018, 121, 863-873.                               | 1.4 | 39        |
| 30 | The Derivation of Sink Functions of Wheat Organs using the GREENLAB Model. Annals of Botany, 2007, 101, 1099-1108.                                                          | 1.4 | 38        |
| 31 | Computational botany: advancing plant science through functional–structural plant modelling.<br>Annals of Botany, 2018, 121, 767-772.                                       | 1.4 | 38        |
| 32 | Canopy architectural and physiological characterization of near-isogenic wheat lines differing in the tiller inhibition gene tin. Frontiers in Plant Science, 2014, 5, 617. | 1.7 | 37        |
| 33 | Agroforestry enables high efficiency of light capture, photosynthesis and dry matter production in a semi-arid climate. European Journal of Agronomy, 2018, 94, 1-11.       | 1.9 | 37        |
| 34 | High productivity of wheat intercropped with maize is associated with plant architectural responses.<br>Annals of Applied Biology, 2016, 168, 357-372.                      | 1.3 | 36        |
| 35 | Estimating the contribution of plant traits to light partitioning in simultaneous maize/soybean intercropping. Journal of Experimental Botany, 2021, 72, 3630-3646.         | 2.4 | 36        |
| 36 | Breeding Beyond Monoculture: Putting the "Intercrop―Into Crops. Frontiers in Plant Science, 2021, 12,<br>734167.                                                            | 1.7 | 32        |

| #  | Article                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | From shade avoidance responses to plant performance at vegetation level: using virtual plant<br>modelling as a tool. New Phytologist, 2014, 204, 268-272. | 3.5 | 31        |

Density responses and spatial distribution of cotton yield and yield components in jujube (Zizyphus) Tj ETQq000 rgBT /Overlock 10 Tf  $\frac{1}{20}$ 

| 39       | Ecological interactions shape the adaptive value of plant defence: Herbivore attack versus competition for light. Functional Ecology, 2019, 33, 129-138.                                                 | 1.7        | 28       |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|
| 40       | Elucidating the interaction between light competition and herbivore feeding patterns using functional–structural plant modelling. Annals of Botany, 2018, 121, 1019-1031.                                | 1.4        | 27       |
| 41       | Ridge and furrow systems with film cover increase maize yields and mitigate climate risks of cold and drought stress in continental climates. Field Crops Research, 2017, 207, 71-78.                    | 2.3        | 26       |
| 42       | Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize. Biogeosciences, 2017, 14, 3851-3858.                                     | 1.3        | 26       |
| 43       | Use of the beta growth function to quantitatively characterize the effects of plant density and a growth regulator on growth and biomass partitioning in cotton. Field Crops Research, 2018, 224, 28-36. | 2.3        | 25       |
| 44       | Improving C4 photosynthesis to increase productivity under optimal and suboptimal conditions.<br>Journal of Experimental Botany, 2021, 72, 5942-5960.                                                    | 2.4        | 25       |
| 45       | Optimized sowing time windows mitigate climate risks for oats production under cool semi-arid growing conditions. Agricultural and Forest Meteorology, 2019, 266-267, 184-197.                           | 1.9        | 24       |
| 46       | Identification of plant configurations maximizing radiation capture in relay strip cotton using a<br>functional–structural plant model. Field Crops Research, 2016, 187, 1-11.                           | 2.3        | 22       |
| 47       | Modeling branching in cereals. Frontiers in Plant Science, 2013, 4, 399.                                                                                                                                 | 1.7        | 21       |
| 48       | Simulating Crop Growth and Development Using Functional-Structural Plant Modeling. Advances in Photosynthesis and Respiration, 2016, , 219-236.                                                          | 1.0        | 20       |
| 49       | Towards modelling the flexible timing of shoot development: simulation of maize organogenesis based on coordination within and between phytomers. Annals of Botany, 2014, 114, 753-762.                  | 1.4        | 18       |
| 50       | Spatial configuration drives complementary capture of light of the understory cotton in young jujube plantations. Field Crops Research, 2017, 213, 21-28.                                                | 2.3        | 18       |
| 51       | Sugar as a key component of the shoot branching regulation network. Plant, Cell and Environment, 2015, 38, 1455-1456.                                                                                    | 2.8        | 17       |
|          |                                                                                                                                                                                                          |            |          |
| 52       | Mycorrhizal associations change root functionality: a 3D modelling study on competitive interactions between plants for light and nutrients. New Phytologist, 2021, 231, 1171-1182.                      | 3.5        | 17       |
| 52<br>53 |                                                                                                                                                                                                          | 3.5<br>1.2 | 17<br>16 |

JOCHEM B EVERS

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Extension of the GroIMP modelling platform to allow easy specification of differential equations describing biological processes within plant models. Computers and Electronics in Agriculture, 2013, 92, 1-8.                                    | 3.7 | 13        |
| 56 | A lack of complementarity for water acquisition limits yield advantage of oats/vetch intercropping in a semi-arid condition. Agricultural Water Management, 2019, 225, 105778.                                                                    | 2.4 | 13        |
| 57 | Use of EDAH Improves Maize Morphological and Mechanical Traits Related to Lodging. Agronomy<br>Journal, 2019, 111, 581-591.                                                                                                                       | 0.9 | 13        |
| 58 | Quantifying the contribution of bent shoots to plant photosynthesis and biomass production of<br>flower shoots in rose (Rosa hybrida) using a functional–structural plant model. Annals of Botany,<br>2020, 126, 587-599.                         | 1.4 | 13        |
| 59 | Disentangling the effects of photosynthetically active radiation and red to far-red ratio on plant<br>photosynthesis under canopy shading: a simulation study using a functional–structural plant model.<br>Annals of Botany, 2020, 126, 635-646. | 1.4 | 13        |
| 60 | Plant architectural responses in simultaneous maize/soybean strip intercropping do not lead to a yield advantage. Annals of Applied Biology, 2020, 177, 195-210.                                                                                  | 1.3 | 13        |
| 61 | Simulating the effects of water limitation on plant biomass using a 3D functional–structural plant<br>model of shoot and root driven by soil hydraulics. Annals of Botany, 2020, 126, 713-728.                                                    | 1.4 | 13        |
| 62 | Ecological significance of light quality in optimizing plant defence. Plant, Cell and Environment, 2019,<br>42, 1065-1077.                                                                                                                        | 2.8 | 12        |
| 63 | Substantial differences occur between canopy and ambient climate: Quantification of interactions in a greenhouse-canopy system. PLoS ONE, 2020, 15, e0233210.                                                                                     | 1.1 | 12        |
| 64 | Does reduced intraspecific competition of the dominant species in intercrops allow for a higher population density?. Food and Energy Security, 2021, 10, 285-298.                                                                                 | 2.0 | 12        |
| 65 | Root plasticity and interspecific complementarity improve yields and water use efficiency of maize/soybean intercropping in a water-limited condition. Field Crops Research, 2022, 282, 108523.                                                   | 2.3 | 12        |
| 66 | Quantifying within-plant spatial heterogeneity in carbohydrate availability in cotton using a<br>local-pool model. Annals of Botany, 2018, 121, 1005-1017.                                                                                        | 1.4 | 11        |
| 67 | Impact of Future Warming and Enhanced [CO 2 ] on the Vegetation loud Interaction. Journal of<br>Geophysical Research D: Atmospheres, 2019, 124, 12444-12454.                                                                                      | 1.2 | 8         |
| 68 | Light from below matters: Quantifying the consequences of responses to farâ€red light reflected<br>upwards for plant performance in heterogeneous canopies. Plant, Cell and Environment, 2021, 44,<br>102-113.                                    | 2.8 | 8         |
| 69 | A new empirical equation to describe the vertical leaf distribution profile of maize. Journal of<br>Agricultural Science, 2020, 158, 676-686.                                                                                                     | 0.6 | 8         |
| 70 | The effect of pruning on yield of cocoa trees is mediated by tree size and tree competition. Scientia Horticulturae, 2022, 304, 111275.                                                                                                           | 1.7 | 8         |
| 71 | Leaf Nitrogen Traits in Response to Plant Density and Nitrogen Supply in Oilseed Rape. Agronomy, 2020,<br>10, 1780.                                                                                                                               | 1.3 | 6         |
| 72 | Quantifying the Feedback Between Rice Architecture, Physiology, and Microclimate Under Current and<br>Future CO 2 Conditions. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005452.                                        | 1.3 | 5         |

| #  | Article                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Turning plant interactions upside down: Light signals from below matter. Plant, Cell and Environment, 2021, 44, 1111-1118.        | 2.8 | 5         |
| 74 | Light Extinction in Spring Wheat Canopies in Relation to Crop Configuration and Solar Angle. , 2009, ,                            |     | 4         |
| 75 | Optimal plant defence under competition for light and nutrients: an evolutionary modelling approach. In Silico Plants, 2020, 2, . | 0.8 | 4         |
| 76 | Simulation of optimal rooting strategies: What's the best way to find a wet crack?. , 2012, , .                                   |     | 2         |
| 77 | Modelling the combined effect of moisture and temperature on secondary infection in a coupled host-pathogen FSPM. , 2018, , .     |     | Ο         |
|    |                                                                                                                                   |     |           |