Vera Homem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4289741/publications.pdf

Version: 2024-02-01

279798 189892 2,911 54 23 50 citations h-index g-index papers 55 55 55 3826 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Degradation and removal methods of antibiotics from aqueous matrices $\hat{a} \in A$ review. Journal of Environmental Management, 2011, 92, 2304-2347.	7.8	1,137
2	Advances in analytical methods and occurrence of organic UV-filters in the environment — A review. Science of the Total Environment, 2015, 526, 278-311.	8.0	247
3	A review of organic UV-filters in wastewater treatment plants. Environment International, 2016, 86, 24-44.	10.0	219
4	Amoxicillin degradation at ppb levels by Fenton's oxidation using design of experiments. Science of the Total Environment, 2010, 408, 6272-6280.	8.0	113
5	Long lasting perfume – A review of synthetic musks in WWTPs. Journal of Environmental Management, 2015, 149, 168-192.	7.8	92
6	Microwave-assisted Fenton's oxidation of amoxicillin. Chemical Engineering Journal, 2013, 220, 35-44.	12.7	70
7	From the shop to the drain — Volatile methylsiloxanes in cosmetics and personal care products. Environment International, 2016, 92-93, 50-62.	10.0	68
8	Comparison of Techniques and Solvents on the Antimicrobial and Antioxidant Potential of Extracts from Acacia dealbata and Olea europaea. Antibiotics, 2020, 9, 48.	3.7	65
9	Spatial and seasonal occurrence of micropollutants in four Portuguese rivers and a case study for fluorescence excitation-emission matrices. Science of the Total Environment, 2018, 644, 1128-1140.	8.0	53
10	Ultrasound-assisted dispersive liquid–liquid microextraction for the determination of synthetic musk fragrances in aqueous matrices by gas chromatography–mass spectrometry. Talanta, 2016, 148, 84-93.	5.5	52
11	Insights on sulfamethoxazole bio-transformation by environmental Proteobacteria isolates. Journal of Hazardous Materials, 2018, 358, 310-318.	12.4	52
12	Volatile methylsiloxanes through wastewater treatment plants – A review of levels and implications. Environment International, 2017, 102, 9-29.	10.0	46
13	Amoxicillin removal from aqueous matrices by sorption with almond shell ashes. International Journal of Environmental Analytical Chemistry, 2010, 90, 1063-1084.	3.3	44
14	Solar photocatalytic oxidation of recalcitrant natural metabolic by-products of amoxicillin biodegradation. Water Research, 2014, 65, 307-320.	11.3	38
15	Biomonitoring levels and trends of PAHs and synthetic musks associated with land use in urban environments. Science of the Total Environment, 2018, 618, 93-100.	8.0	35
16	Simultaneous determination of synthetic musks and UV-filters in water matrices by dispersive liquid-liquid microextraction followed by gas chromatography tandem mass-spectrometry. Journal of Chromatography A, 2019, 1590, 47-57.	3.7	33
17	Biomonitoring of pesticides by pine needles — Chemical scoring, risk of exposure, levels and trends. Science of the Total Environment, 2014, 476-477, 114-124.	8.0	32
18	Development and optimization of a QuEChERS-GC–MS/MS methodology to analyse ultraviolet-filters and synthetic musks in sewage sludge. Science of the Total Environment, 2019, 651, 2606-2614.	8.0	32

#	Article	IF	Citations
19	Development and optimization of a solid-phase microextraction gas chromatography–tandem mass spectrometry methodology to analyse ultraviolet filters in beach sand. Journal of Chromatography A, 2018, 1564, 59-68.	3.7	30
20	An analytical multi-residue approach for the determination of semi-volatile organic pollutants in pine needles. Analytica Chimica Acta, 2015, 858, 24-31.	5.4	29
21	Determination of multiclass personal care products in continental waters by solid-phase microextraction followed by gas chromatography-tandem mass spectrometry. Journal of Chromatography A, 2019, 1607, 460398.	3.7	27
22	New analytical method for the determination of musks in personal care products by <scp>Q</scp> uick, <scp>E</scp> asy, <scp>C</scp> heap, <scp>E</scp> ffective, <scp>R</scp> ugged, and <scp>S</scp> afe extraction followed by <scp>GC</scp> â€" <scp>MS</scp> . Journal of Separation Science, 2013, 36, 2176-2184.	2.5	26
23	Optimisation and application of dispersive liquid–liquid microextraction for simultaneous determination of carbamates and organophosphorus pesticides in waters. Analytical Methods, 2013, 5, 2736.	2.7	25
24	Assessing seasonal variation of synthetic musks in beach sands from Oporto coastal area: A case study. Environmental Pollution, 2017, 226, 190-197.	7.5	24
25	Development and Validation of a Fast Procedure To Analyze Amoxicillin in River Waters by Direct-Injection LC–MS/MS. Journal of Chemical Education, 2014, 91, 1961-1965.	2.3	22
26	Scented traces $\hat{a} \in \text{``Dermal exposure of synthetic musk fragrances in personal care products and environmental input assessment. Chemosphere, 2015, 139, 276-287.}$	8.2	21
27	An approach to the environmental prioritisation of volatile methylsiloxanes in several matrices. Science of the Total Environment, 2017, 579, 506-513.	8.0	21
28	Headspace solid-phase microextraction based on the metal-organic framework CIM-80(Al) coating to determine volatile methylsiloxanes and musk fragrances in water samples using gas chromatography and mass spectrometry. Talanta, 2021, 232, 122440.	5.5	21
29	Using air, soil and vegetation to assess the environmental behaviour of siloxanes. Environmental Science and Pollution Research, 2016, 23, 3273-3284.	5.3	20
30	Volatile methylsiloxanes in personal care products – Using QuEChERS as a "green―analytical approach. Talanta, 2016, 155, 94-100.	5.5	19
31	Analytical methodology to screen UV-filters and synthetic musk compounds in market tomatoes. Chemosphere, 2020, 238, 124605.	8.2	19
32	Can coastline plant species be used as biosamplers of emerging contaminants? - UV-filters and synthetic musks as case studies. Chemosphere, 2017, 184, 1134-1140.	8.2	18
33	Preliminary Feasibility Study of Benzo(a)Pyrene Oxidative Degradation by Fenton Treatment. Journal of Environmental and Public Health, 2009, 2009, 1-6.	0.9	17
34	Footprints in the sand – Assessing the seasonal trends of volatile methylsiloxanes and UV-filters. Marine Pollution Bulletin, 2019, 140, 9-16.	5.0	17
35	Uptake and translocation of UV-filters and synthetic musk compounds into edible parts of tomato grown in amended soils. Science of the Total Environment, 2021, 792, 148482.	8.0	14
36	Prioritisation approach to score and rank synthetic musk compounds for environmental risk assessment. Journal of Chemical Technology and Biotechnology, 2015, 90, 1619-1630.	3.2	12

#	Article	IF	CITATIONS
37	Solvent-saving approaches for the extraction of siloxanes from pine needles, soils and passive air samplers. Analytical Methods, 2016, 8, 5378-5387.	2.7	12
38	Marine vegetation analysis for the determination of volatile methylsiloxanes in coastal areas. Science of the Total Environment, 2019, 650, 2364-2373.	8.0	12
39	Gone with the flow - Assessment of personal care products in Portuguese rivers. Chemosphere, 2022, 293, 133552.	8.2	12
40	A review of bioaccumulation of volatile methylsiloxanes in aquatic ecosystems. Science of the Total Environment, 2022, 824, 153821.	8.0	11
41	Estimation of urban POP and emerging SVOC levels employing Ligustrum lucidum leaves. Atmospheric Pollution Research, 2019, 10, 1524-1530.	3.8	9
42	Modified dispersive solidâ€phase extraction and cleanup followed by GCâ€MS/MS analysis to quantify ultraviolet filters and synthetic musk compounds in soil samples. Journal of Separation Science, 2021, 44, 3107-3116.	2.5	8
43	Optimisation and validation of an analytical methodology for selected pesticides in waters by solid-phase extraction and liquid chromatography with ion-trap mass spectrometry detection. International Journal of Environmental Analytical Chemistry, 2010, 90, 205-218.	3.3	7
44	Presence of metals and metalloids in crumb rubber used as infill of worldwide synthetic turf pitches: Exposure and risk assessment. Chemosphere, 2022, 299, 134379.	8.2	7
45	Response surface optimisation applied to a headspace-solid phase microextraction-gas chromatography-mass spectrometry method for the analysis of volatile organic compounds in water matrices. International Journal of Environmental Analytical Chemistry, 2012, 92, 166-189.	3.3	6
46	Levels ofÂvolatile methylsiloxanes in urban wastewaterÂsludgesÂat various steps of treatment. Environmental Chemistry Letters, 2021, 19, 2723-2732.	16.2	6
47	Using Design of Experiments to Optimize a Screening Analytical Methodology Based on Solid-Phase Microextraction/Gas Chromatography for the Determination of Volatile Methylsiloxanes in Water. Molecules, 2021, 26, 3429.	3.8	5
48	Reply to comments on "Volatile methylsiloxanes in personal care products – Using QuEChERS as a "green―analytical approach―published in Talanta 174 (2017) 156–157. Talanta, 2018, 179, 485-489.	5.5	2
49	ALTERNATIVE APPROACHES FOR AMOXICILLIN REMOVAL FROM WATER - FENTON'S OXIDATION VERSUS SORPTION BY ALMOND SHELL ASHES. Environmental Engineering and Management Journal, 2015, 14, 2399-2407.	0.6	2
50	Analytical Methods for Volatile Methylsiloxanes Quantification: Current Trends and Challenges. Handbook of Environmental Chemistry, 2020, , 71-118.	0.4	1
51	Analysis of Volatile Methylsiloxanes in Water using a Small-scale Liquid-liquid Extraction Method followed by Gas Chromatography-mass Spectrometry (LLE-GC-MS). U Porto Journal of Engineering, 2022, 8, 2-12.	0.4	1
52	Using air, soil and vegetation to assess the environmental behaviour of siloxanes. Environmental Science and Pollution Research, 2017, 24, 11878-11878.	5.3	0
53	Concluding Remarks and Future Perspectives. Handbook of Environmental Chemistry, 2019, , 315-320.	0.4	0
54	Editorial. Science of the Total Environment, 2020, 706, 134933.	8.0	0