
Gabriel Ghiaur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4289693/publications.pdf Version: 2024-02-01

CARDIEL CHIALID

#	Article	IF	CITATIONS
1	Arsenic trioxide dose capping to decrease toxicity in the treatment of acute promyelocytic leukemia. Journal of Oncology Pharmacy Practice, 2022, 28, 1340-1349.	0.5	5
2	Nonmyeloablative Allogeneic Transplantation With Post-Transplant Cyclophosphamide for Acute Myeloid Leukemia With IDH Mutations: A Single Center Experience. Clinical Lymphoma, Myeloma and Leukemia, 2022, 22, 260-269.	0.2	4
3	Unexplained hemorrhagic syndrome? Consider acquired hemophilia A or B. Blood Reviews, 2022, 53, 100907.	2.8	4
4	Post-Transplantation Cyclophosphamide-Based Graft- versus-Host Disease Prophylaxis with Nonmyeloablative Conditioning for Blood or Marrow Transplantation for Myelofibrosis. Transplantation and Cellular Therapy, 2022, 28, 259.e1-259.e11.	0.6	11
5	Taking the STING out of acute myeloid leukemia through macrophage-mediated phagocytosis. Journal of Clinical Investigation, 2022, 132, .	3.9	6
6	The Coming of Age of Preclinical Models of MDS. Frontiers in Oncology, 2022, 12, 815037.	1.3	6
7	Editorial: Modern Approaches to Hemophilia Management: Gene Therapy and Beyond. Frontiers in Medicine, 2022, 9, 859710.	1.2	0
8	The role of the atypical chemokine receptor CCRL2 in myelodysplastic syndrome and secondary acute myeloid leukemia. Science Advances, 2022, 8, eabl8952.	4.7	7
9	Abstract 5435: CCRL2 affects the sensitivity of MDS and secondary AML to azacitidine. Cancer Research, 2022, 82, 5435-5435.	0.4	0
10	FLT3-ITD Allelic Burden and Acute Promyelocytic Leukemia Risk Stratification. Biology, 2021, 10, 243.	1.3	1
11	TCR β chain–directed bispecific antibodies for the treatment of T cell cancers. Science Translational Medicine, 2021, 13, .	5.8	30
12	Increased body mass index is a risk factor for acute promyelocytic leukemia. EJHaem, 2021, 2, 33-39.	0.4	5
13	Response Prediction to Isocitrate Dehydrogenase (IDH) Inhibitors in Patients with <i>IDH1</i> or <i>IDH2</i> -Mutated Acute Myeloid Leukemia Using Clinical and Genomic Data. Blood, 2021, 138, 1285-1285.	0.6	1
14	Single-Cell Transcriptomic and Proteomic Analysis of Acute Myeloid Leukemia (AML) Patients with Abnormalities on Chromosome 7. Blood, 2021, 138, 1289-1289.	0.6	1
15	Arsenic Trioxide Reprograms the Bone-Marrow Microenvironment to Sensitize Minimal Residual Disease in Acute Myeloid Leukemia. Blood, 2021, 138, 1166-1166.	0.6	0
16	Nonmyeloablative Allogeneic Transplantation in First Remission for Philadelphia Chromosome-Negative B-Cell Acute Lymphoblastic Leukemia with Post-Transplantation Cyclophosphamide: Outcomes By Receipt of Pre-Transplant Blinatumomab. Blood, 2021, 138, 1846-1846.	0.6	0
17	CD38 Is a Key Regulator of Tumor Growth By Modulating the Metabolic Signature of Malignant Plasma Cells. Blood, 2021, 138, 2652-2652.	0.6	1
18	A Phase 1 Study of IRX195183, a RARα-Selective CYP26 Resistant Retinoid, in Patients With Relapsed or Refractory AML. Frontiers in Oncology, 2020, 10, 587062.	1.3	3

GABRIEL GHIAUR

#	Article	IF	CITATIONS
19	Targeting the Microenvironment in MDS: The Final Frontier. Frontiers in Pharmacology, 2020, 11, 1044.	1.6	16
20	Allogeneic transplantation for Ph+ acute lymphoblastic leukemia with posttransplantation cyclophosphamide. Blood Advances, 2020, 4, 5078-5088.	2.5	23
21	Transforming growth factor βâ€mediated micromechanics modulates disease progression in primary myelofibrosis. Journal of Cellular and Molecular Medicine, 2020, 24, 11100-11110.	1.6	11
22	Knockout of Cyp26a1 and Cyp26b1 during postnatal life causes reduced lifespan, dermatitis, splenomegaly, and systemic inflammation in mice. FASEB Journal, 2020, 34, 15788-15804.	0.2	16
23	Overcoming microenvironment-mediated protection from ATRA using CYP26-resistant retinoids. Leukemia, 2020, 34, 3077-3081.	3.3	14
24	CD38 deletion of human primary NK cells eliminates daratumumab-induced fratricide and boosts their effector activity. Blood, 2020, 136, 2416-2427.	0.6	77
25	The K666N mutation in SF3B1 is associated with increased progression of MDS and distinct RNA splicing. Blood Advances, 2020, 4, 1192-1196.	2.5	37
26	Transplant Outcomes for IDH-Mutated AML: Good Outcomes Thanks to Keeping Good Company. Blood, 2020, 136, 31-32.	0.6	0
27	Allogeneic Transplantation for Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia with Post-Transplantation Cyclophosphamide: Assessing the Importance of Conditioning Regimen, Donor Choice, and Tyrosine Kinase Inhibitor Use. Blood, 2020, 136, 44-45.	0.6	0
28	Reduced-Intensity Induction with Dasatinib Vs. Hypercvad + 2nd Generation TKIs with MRD-Guided Follow-up Therapy Leads to Comparable Rates of MRD-Negative Remission While Reducing Transfusions and Neutropenia in Ph+ ALL. Blood, 2020, 136, 42-44.	0.6	0
29	Noncoding dsRNA induces retinoic acid synthesis to stimulate hair follicle regeneration via TLR3. Nature Communications, 2019, 10, 2811.	5.8	64
30	The retinoic acid hydroxylase Cyp26a1 has minor effects on postnatal vitamin A homeostasis, but is required for exogenous atRA clearance. Journal of Biological Chemistry, 2019, 294, 11166-11179.	1.6	24
31	Regulation of drug metabolizing enzymes in the leukaemic bone marrow microenvironment. Journal of Cellular and Molecular Medicine, 2019, 23, 4111-4117.	1.6	11
32	Role of CYP3A4 in bone marrow microenvironment–mediated protection of FLT3/ITD AML from tyrosine kinase inhibitors. Blood Advances, 2019, 3, 908-916.	2.5	49
33	CD38 Knockout Primary NK Cells to Prevent "Fratricide" and Boost Daratumumab Activity. Blood, 2019, 134, 870-870.	0.6	6
34	Coagulopathy, Hypoxemia, and Mortality Outcomes in Newly Diagnosed Acute Myeloid Leukemia with Hyperleukocytosis Treated with Large Volume Leukapheresis. Blood, 2019, 134, 3841-3841.	0.6	1
35	Fibroblast dynamics as an in vitro screening platform for anti-fibrotic drugs in primary myelofibrosis. Journal of Cellular Physiology, 2018, 233, 422-433.	2.0	9
36	Genomic characterization of chromosome translocations in patients with T/myeloid mixed-phenotype acute leukemia. Leukemia and Lymphoma, 2018, 59, 1231-1238.	0.6	8

GABRIEL GHIAUR

#	Article	IF	CITATIONS
37	Combination of ATO with FLT3 TKIs eliminates FLT3/ITD+ leukemia cells through reduced expression of FLT3. Oncotarget, 2018, 9, 32885-32899.	0.8	18
38	Mechanisms of Resistance to FLT3 Inhibitors and the Role of the Bone Marrow Microenvironment. Hematology/Oncology Clinics of North America, 2017, 31, 681-692.	0.9	45
39	Timed sequential therapy for acute myelogenous leukemia: Results of a retrospective study of 301 patients and review of the literature. Leukemia Research, 2017, 61, 25-32.	0.4	12
40	Retinoic acid, CYP26, and drug resistance in the stem cell niche. Experimental Hematology, 2017, 54, 17-25.	0.2	21
41	PARP inhibitors in acute myeloid leukaemia therapy: How a synthetic lethality approach can be a valid therapeutic alternative. Medical Hypotheses, 2017, 104, 30-34.	0.8	13
42	Translating leukemia stem cells into the clinical setting: Harmonizing theÂheterogeneity. Experimental Hematology, 2016, 44, 1130-1137.	0.2	17
43	All-trans retinoic acid synergizes with FLT3 inhibition to eliminate FLT3/ITD+ leukemia stem cells in vitro and in vivo. Blood, 2016, 127, 2867-2878.	0.6	40
44	Donor cell leukemia arising from clonal hematopoiesis after bone marrow transplantation. Leukemia, 2016, 30, 1916-1920.	3.3	79
45	Hedgehog and retinoid signaling alters multiple myeloma microenvironment and generates bortezomib resistance. Journal of Clinical Investigation, 2016, 126, 4460-4468.	3.9	35
46	Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature, 2015, 517, 381-385.	13.7	469
47	Acute Myelogenous Leukemia and its Microenvironment: A Molecular Conversation. Seminars in Hematology, 2015, 52, 200-206.	1.8	28
48	RAR-Alpha Targeting Compounds Overcome Bone Marrow (BM) Stromal Protection of AML By CYP26. Blood, 2015, 126, 2474-2474.	0.6	1
49	FLT3 Inhibition and Retinoid Signaling Overcome Stromal Protection to Target FLT3/ITD-Expressing Leukemia Stem Cells in the Bone Marrow Microenvironment. Blood, 2015, 126, 790-790.	0.6	9
50	All-Trans Retinoic Acid Activity in Acute Myeloid Leukemia: Role of Cytochrome P450 Enzyme Expression by the Microenvironment. PLoS ONE, 2015, 10, e0127790.	1.1	54
51	Human bone marrow niche chemoprotection mediated by cytochrome p450 enzymes. Oncotarget, 2015, 6, 14905-14912.	0.8	44
52	Abstract 4842: The stem cell niche detoxifies chemotherapy and protects malignant hematopoietic cells via expression of cytochrome P450 enzymes. , 2014, , .		1
53	Regulation of human hematopoietic stem cell self-renewal by the microenvironment's control of retinoic acid signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16121-16126.	3.3	116
54	Bone Marrow (BM) Stromal Expression Of Cytochrome P450 (CYP) Enzymes Protects Acute Myeloid Leukemia (AML) From All-Trans Retinoic Acid (atRA). Blood, 2013, 122, 1449-1449.	0.6	1

#	Article	IF	CITATIONS
55	All-Trans Retinoic Acid Synergizes With FLT3 Tyrosine Kinase Inhibition To Eliminate FLT3/ITD-Expressing Leukemia Cells. Blood, 2013, 122, 3960-3960.	0.6	1
56	Cancer stem cells. Current Opinion in Oncology, 2012, 24, 170-175.	1.1	9
57	Concise Review: Cancer Stem Cells and Minimal Residual Disease. Stem Cells, 2012, 30, 89-93.	1.4	71
58	Hematopoietic Stem Cell (HSC) Self-Renewal Is Determined by the Bone Marrow (BM) Microenvironment's Regulation of Retinoic Acid (RA) Signaling Blood, 2012, 120, 2346-2346.	0.6	0