Bastian E Rapp

List of Publications by Citations

Source: https://exaly.com/author-pdf/4289341/bastian-e-rapp-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

2,673 83 25 50 h-index g-index citations papers 8.5 105 5.29 3,355 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
83	Surface acoustic wave biosensors: a review. <i>Analytical and Bioanalytical Chemistry</i> , 2008 , 391, 1509-19	4.4	546
82	Three-dimensional printing of transparent fused silica glass. <i>Nature</i> , 2017 , 544, 337-339	50.4	396
81	Let there be chip E owards rapid prototyping of microfluidic devices: one-step manufacturing processes. <i>Analytical Methods</i> , 2011 , 3, 2681	3.2	235
80	Hot embossing of high performance polymers. <i>Microsystem Technologies</i> , 2011 , 17, 585-592	1.7	114
79	An indirect microfluidic flow injection analysis (FIA) system allowing diffusion free pumping of liquids by using tetradecane as intermediary liquid. <i>Lab on A Chip</i> , 2009 , 9, 354-6	7.2	114
78	Biosensors with label-free detection designed for diagnostic applications. <i>Analytical and Bioanalytical Chemistry</i> , 2010 , 398, 2403-12	4.4	92
77	Advances in DNA-directed immobilization. <i>Current Opinion in Chemical Biology</i> , 2014 , 18, 8-15	9.7	77
76	Bioinspired air-retaining nanofur for drag reduction. <i>ACS Applied Materials & Discourse (Control of the Property of the Prope</i>	9.5	63
75	Maskless projection lithography for the fast and flexible generation of grayscale protein patterns. <i>Small</i> , 2012 , 8, 1570-8	11	63
74	Synthetic enzyme supercomplexes: co-immobilization of enzyme cascades. <i>Analytical Methods</i> , 2015 , 7, 4030-4037	3.2	53
73	Liquid Glass: A Facile Soft Replication Method for Structuring Glass. <i>Advanced Materials</i> , 2016 , 28, 4646	-50,	46
7 ²	High-Performance Materials for 3D Printing in Chemical Synthesis Applications. <i>Advanced Materials</i> , 2019 , 31, e1805982	24	44
71	Fabrication of arbitrary three-dimensional suspended hollow microstructures in transparent fused silica glass. <i>Nature Communications</i> , 2019 , 10, 1439	17.4	42
70	Glassomer-Processing Fused Silica Glass Like a Polymer. <i>Advanced Materials</i> , 2018 , 30, e1707100	24	37
69	Two-Photon Polymerization of Nanocomposites for the Fabrication of Transparent Fused Silica Glass Microstructures. <i>Advanced Materials</i> , 2021 , 33, e2006341	24	36
68	Study of Biofilm Growth on Slippery Liquid-Infused Porous Surfaces Made from Fluoropor. <i>ACS Applied Materials & Discourt & Discourt & Discourt & Discourt & Discourt & Discourt </i>	9.5	34
67	Online monitoring of biofilm growth and activity using a combined multi-channel impedimetric and amperometric sensor. <i>Biosensors and Bioelectronics</i> , 2013 , 47, 157-63	11.8	33

(2013-2017)

66	Transparent, abrasion-insensitive superhydrophobic coatings for real-world applications. <i>Scientific Reports</i> , 2017 , 7, 15078	4.9	32
65	Optimization of enzyme immobilization on magnetic microparticles using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) as a crosslinking agent. <i>Analytical Methods</i> , 2015 , 7, 10291-10298	3.2	30
64	Connecting microfluidic chips using a chemically inert, reversible, multichannel chip-to-world-interface. <i>Lab on A Chip</i> , 2013 , 13, 4343-51	7.2	29
63	Computer-aided microfluidics (CAMF): from digital 3D-CAD models to physical structures within a day. <i>Microfluidics and Nanofluidics</i> , 2013 , 15, 625-635	2.8	29
62	Highly Fluorinated Methacrylates for Optical 3D Printing of Microfluidic Devices. <i>Micromachines</i> , 2018 , 9,	3.3	28
61	The chemistry of cyborgsinterfacing technical devices with organisms. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 13942-57	16.4	28
60	Phase change materials in microactuators: Basics, applications and perspectives. <i>Sensors and Actuators A: Physical</i> , 2018 , 271, 303-347	3.9	26
59	Fused Deposition Modeling of Microfluidic Chips in Polymethylmethacrylate. <i>Micromachines</i> , 2020 , 11,	3.3	26
58	Biosensors for diagnostic applications. <i>Advances in Biochemical Engineering/Biotechnology</i> , 2013 , 133, 115-48	1.7	24
57	Multi-channel microfluidic biosensor platform applied for online monitoring and screening of biofilm formation and activity. <i>PLoS ONE</i> , 2015 , 10, e0117300	3.7	24
56	Liquid polystyrene: a room-temperature photocurable soft lithography compatible pour-and-cure-type polystyrene. <i>Lab on A Chip</i> , 2014 , 14, 2698-708	7.2	23
55	Tacky cyclic olefin copolymer: a biocompatible bonding technique for the fabrication of microfluidic channels in COC. <i>Lab on A Chip</i> , 2016 , 16, 1561-4	7.2	22
54	Microfluidics on liquid handling stations (E-on-LHS): an industry compatible chip interface between microfluidics and automated liquid handling stations. <i>Lab on A Chip</i> , 2013 , 13, 2337-43	7.2	21
53	Liquid PMMA: A High Resolution Polymethylmethacrylate Negative Photoresist as Enabling Material for Direct Printing of Microfluidic Chips. <i>Advanced Engineering Materials</i> , 2018 , 20, 1700699	3.5	18
52	Biofunctional Micropatterning of Thermoformed 3D Substrates. <i>Advanced Functional Materials</i> , 2014 , 24, 442-450	15.6	17
51	Deposition of ultrathin parylene C films in the range of 18 nm to 142 nm: Controlling the layer thickness and assessing the closeness of the deposited films. <i>Thin Solid Films</i> , 2012 , 520, 4884-4888	2.2	16
50	Design and integration of a generic disposable array-compatible sensor housing into an integrated disposable indirect microfluidic flow injection analysis system. <i>Biomedical Microdevices</i> , 2011 , 13, 909-22	3.7	14
49	Rapid bonding of polydimethylsiloxane to stereolithographically manufactured epoxy components using a photogenerated intermediary layer. <i>Lab on A Chip</i> , 2013 , 13, 2268-71	7.2	13

48	vasQchip: A Novel Microfluidic, Artificial Blood Vessel Scaffold for Vascularized 3D Tissues. <i>Advanced Materials Technologies</i> , 2018 , 3, 1700246	6.8	12
47	High-throughput injection molding of transparent fused silica glass. <i>Science</i> , 2021 , 372, 182-186	33.3	12
46	Long-Term Stability of Polymer-Coated Surface Transverse Wave Sensors for the Detection of Organic Solvent Vapors. <i>Sensors</i> , 2017 , 17,	3.8	11
45	Design and characterization of a platform for thermal actuation of up to 588 microfluidic valves. <i>Microfluidics and Nanofluidics</i> , 2013 , 14, 177-186	2.8	11
44	Rational design of a peptide capture agent for CXCL8 based on a model of the CXCL8:CXCR1 complex. <i>RSC Advances</i> , 2015 , 5, 25657-25668	3.7	11
43	Volumetric additive manufacturing of silica glass with microscale computed axial lithography <i>Science</i> , 2022 , 376, 308-312	33.3	11
42	Acoustic Biosensors Coated With Phosphorylcholine Groups for Label-Free Detection of Human C-Reactive Protein in Serum. <i>IEEE Sensors Journal</i> , 2015 , 15, 4388-4392	4	10
41	Polymer coating behavior of Rayleigh-SAW resonators with gold electrode structure for gas sensor applications. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2007 , 54, 157-66	3.2	10
40	Quantification of the Influence of Endotoxins on the Mechanics of Adult and Neonatal Red Blood Cells. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 7837-45	3.4	9
39	Photolithographic structuring of soft, extremely foldable and autoclavable hydrophobic barriers in paper. <i>Analytical Methods</i> , 2018 , 10, 4028-4035	3.2	9
38	Polymer Structures on Surface Acoustic Wave Biosensors. <i>Procedia Technology</i> , 2017 , 27, 35-36		9
37	Polysiloxane layers created by sol-gel and photochemistry: ideal surfaces for rapid, low-cost and high-strength bonding of epoxy components to polydimethylsiloxane. <i>Lab on A Chip</i> , 2015 , 15, 1772-82	7.2	8
36	Suspended Liquid Subtractive Lithography: One-step generation of 3D channel geometries in viscous curable polymer matrices. <i>Scientific Reports</i> , 2017 , 7, 7387	4.9	8
35	Functionalization of paper using photobleaching: A fast and convenient method for creating paper-based assays with colorimetric and fluorescent readout. <i>Engineering in Life Sciences</i> , 2016 , 16, 525-531	3.4	8
34	Numerics made easy: solving the Navier-Stokes equation for arbitrary channel cross-sections using Microsoft Excel. <i>Biomedical Microdevices</i> , 2016 , 18, 52	3.7	8
33	Hot punching on an 8 inch substrate as an alternative technology to produce holes on a large scale. <i>Microsystem Technologies</i> , 2010 , 16, 1201-1206	1.7	7
32	Liquid Glass for Photovoltaics: Multifunctional Front Cover Glass for Solar Modules. <i>ACS Applied Materials & Acs Applied & Acs Appl</i>	9.5	6
31	Facile fabrication of micro-/nanostructured, superhydrophobic membranes with adjustable porosity by 3D printing. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 21379-21386	13	6

(2019-2013)

30	Chemie der Cyborgs Dur Verknöfung technischer Systeme mit Lebewesen. <i>Angewandte Chemie</i> , 2013 , 125, 14190-14206	3.6	5	
29	Surface Acoustic Wave (SAW) Biosensor Chip System - a Promising Alternative for Biomedical Applications. <i>IFMBE Proceedings</i> , 2009 , 73-76	0.2	5	
28	Divide and print. Nature Materials, 2020, 19, 131-133	27	4	
27	Long-term capability of polymer-coated surface transverse wave sensors for distinguishing vapors of similar hydrocarbons. <i>Sensors and Actuators B: Chemical</i> , 2018 , 274, 560-564	8.5	4	
26	Melt-Extrusion-Based Additive Manufacturing of Transparent Fused Silica Glass. <i>Advanced Science</i> , 2021 , 8, e2103180	13.6	4	
25	Emerging Technologies and Materials for High-Resolution 3D Printing of Microfluidic Chips. <i>Advances in Biochemical Engineering/Biotechnology</i> , 2020 , 1	1.7	4	
24	Localized protein immobilization on microstructured polymeric surfaces for diagnostic applications. <i>Microfluidics and Nanofluidics</i> , 2016 , 20, 1	2.8	3	
23	Synthesis and application of photo curable perfluoropolyethers as new material for microfluidics. <i>Procedia Engineering</i> , 2010 , 5, 866-869		3	
22	Additive manufacturing of microfluidic glass chips 2018,		3	
21	An Analytical Solution to Neumann-Type Mixed Boundary Poiseuille Microfluidic Flow in Rectangular Channel Cross-Sections (Slip/No-Slip) including a Numerical Technique to Derive It. <i>Journal of Biomedical Science and Engineering</i> , 2017 , 10, 205-218	0.7	3	
20	Finite Difference Method 2017 , 623-631		2	
19	An individual addressable and latchable actuator array for microfluidic systems. <i>Microfluidics and Nanofluidics</i> , 2016 , 20, 1	2.8	2	
18	Next-generation 3D printing of glass: the emergence of enabling materials 2018,		2	
17	Facile integration of electronics in glass microfluidic devices for electrochemical synthesis and analysis 2020 ,		2	
16	Fused Deposition Modeling of Microfluidic Chips in Transparent Polystyrene. <i>Micromachines</i> , 2021 , 12,	3.3	2	
15	High Resolution Patterning of an Organic-Inorganic Photoresin for the Fabrication of Platinum Microstructures. <i>Advanced Materials</i> , 2021 , 33, e2101992	24	2	
14	A Nontoxic Battery with 3D-Printed Housing for On-Demand Operation of Microcontrollers in Microfluidic Sensors. <i>Micromachines</i> , 2019 , 10,	3.3	1	
13	Analytical Solution of the Time-Dependent Microfluidic Poiseuille Flow in Rectangular Channel Cross-Sections and its Numerical Implementation in Microsoft Excel. <i>Biosensors</i> , 2019 , 9,	5.9	1	

12	Electrochemical Methods for Biomass and Biocorrosion Monitoring 2018, 166-172		1
11	Biosensor packaging ladaptation of the surface modification procedure. <i>Procedia Engineering</i> , 2010 , 5, 363-366		1
10	Sacrificial template replication: fabrication of arbitrary embedded microfluidic channels in transparent fused silica glass 2020 ,		1
9	Generation of multi-level microstructures using a wavelength-selective photoresist and mask-less grayscale lithography 2020 ,		1
8	3D printing of highly fluorinated methacrylates for the rapid prototyping of transparent and chemically-resistant microfluidic devices 2019 ,		1
7	On-chip Liquid Metal Plug Generator Advanced Materials, 2022 , e2201469	24	1
6	Study of repellence on polymeric surfaces with two individually adjustable pore hierarchies. <i>Chemical Engineering Journal</i> , 2022 , 437, 135287	14.7	0
5	Fluidic Platforms and Components of Lab-on-a-Chip devices 2015 , 83-139		
4	Towards Biofilm Spectroscopy IA Novel Microfluidic Approach for Characterizing Biofilm Subpopulation by Microwave-Based Electrical Impedance Spectroscopy. <i>Frequenz</i> , 2018 , 72, 123-134	0.6	
3	Taylor-Aris Dispersion 2017 , 401-417		
2	3D Printing of Transparent Glasses. Springer Series in Optical Sciences, 2021, 169-184	0.5	
1	A Polystyrene Photoresin for Direct Lithography of Microfluidic Chips. <i>Advanced Materials Technologies</i> ,2200084	6.8	