

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4289136/publications.pdf Version: 2024-02-01

Vilin

#	Article	IF	CITATIONS
1	Luminescent and ultrastable perovskite-acrylate based elastomers with excellent stretchability and self-healing capability for flexible backlight display. Chemical Engineering Journal, 2022, 433, 133590.	6.6	18
2	Tuning Photoexcited Charge Transfer in Imine-Linked Two-Dimensional Covalent Organic Frameworks. Journal of Physical Chemistry Letters, 2022, 13, 1398-1405.	2.1	16
3	Triangular Topological 2D Covalent Organic Frameworks Constructed via Symmetric or Asymmetric "Twoâ€inâ€One―Type Monomers. Advanced Science, 2022, 9, e2105517.	5.6	12
4	A sequential cyclization/ï€-extension strategy for modular construction of nanographenes enabled by stannole cycloadditions. Chemical Science, 2022, 13, 5568-5573.	3.7	5
5	Bidentate Ligand-Induced Oriented Transformation of CsPbBr ₃ Perovskite Nanocrystals into Nanowires for X-ray Photodetectors. ACS Applied Nano Materials, 2022, 5, 13737-13744.	2.4	10
6	Multiscale Characterization of the Influence of the Organic–Inorganic Interface on the Dielectric Breakdown of Nanocomposites. ACS Nano, 2022, 16, 6744-6754.	7.3	15
7	Porous Polymers as Universal Reversal Agents for Heparin Anticoagulants through an Inclusion–Sequestration Mechanism. Advanced Materials, 2022, 34, e2200549.	11.1	18
8	Twoâ€Đimensional Covalent and Supramolecular Polymers: From Monolayer to Bilayer and the Thicker. Chemistry - A European Journal, 2022, , .	1.7	1
9	Quinoid-viologen conjugates: Redox properties and host-guest complex with cucurbiturils. Materials Today Chemistry, 2022, 24, 100933.	1.7	2
10	Unravelling the Role of Electron Acceptors for the Universal Enhancement of Charge Transport in Quinoidâ€Donorâ€Acceptor Polymers for Highâ€Performance Transistors. Advanced Functional Materials, 2022, 32, .	7.8	11
11	Covalent Organic Frameworks with Irreversible Linkages via Reductive Cyclization of Imines. Journal of the American Chemical Society, 2022, 144, 9827-9835.	6.6	39
12	Copper(III) Metallacyclopentadienes via Zirconocene Transfer and Reductive Elimination to an Isolable Phenanthrocyclobutadiene. Journal of the American Chemical Society, 2022, 144, 9853-9858.	6.6	8
13	Uncovering the Role of Hole Traps in Promoting Hole Transfer from Multiexcitonic Quantum Dots to Molecular Acceptors. ACS Nano, 2021, 15, 2281-2291.	7.3	21
14	Large-Molecule Decomposition Products of Electrolytes and Additives Revealed by On-Electrode Chromatography and MALDI. Joule, 2021, 5, 415-428.	11.7	23
15	Dielectric polymers for high-temperature capacitive energy storage. Chemical Society Reviews, 2021, 50, 6369-6400.	18.7	262
16	An unprecedented quinoid–donor–acceptor strategy to boost the carrier mobilities of semiconducting polymers for organic field-effect transistors. Journal of Materials Chemistry A, 2021, 9, 23497-23505.	5.2	20
17	Crystallization of nanoparticles induced by precipitation of trace polymeric additives. Nature Communications, 2021, 12, 2767.	5.8	15
18	Scalable, Divergent Synthesis of a High Aspect Ratio Carbon Nanobelt. Journal of the American Chemical Society, 2021, 143, 8619-8624.	6.6	43

#	Article	IF	CITATIONS
19	Highly Efficient Ternary Solar Cells with Efficient Förster Resonance Energy Transfer for Simultaneously Enhanced Photovoltaic Parameters. Advanced Functional Materials, 2021, 31, 2105304.	7.8	30
20	Diversifying Composition Leads to Hierarchical Composites with Design Flexibility and Structural Fidelity. ACS Nano, 2021, 15, 14095-14104.	7.3	9
21	Hybrid Porous Crystalline Materials from Metal Organic Frameworks and Covalent Organic Frameworks. Advanced Science, 2021, 8, e2101883.	5.6	83
22	SuFExable polymers with helical structures derived from thionyl tetrafluoride. Nature Chemistry, 2021, 13, 858-867.	6.6	74
23	Selfâ€Assembly of a Bilayer 2D Supramolecular Organic Framework in Water. Angewandte Chemie - International Edition, 2021, 60, 26268-26275.	7.2	37
24	Boosting photovoltaic performance of ternary organic solar cells by integrating a multi-functional guest acceptor. Nano Energy, 2021, 90, 106538.	8.2	40
25	Chemically Stable Polyarylether-Based Metallophthalocyanine Frameworks with High Carrier Mobilities for Capacitive Energy Storage. Journal of the American Chemical Society, 2021, 143, 17701-17707.	6.6	42
26	Chain-Growth Sulfur(VI) Fluoride Exchange Polycondensation: Molecular Weight Control and Synthesis of Degradable Polysulfates. ACS Central Science, 2021, 7, 1919-1928.	5.3	13
27	Solution-processable and functionalizable ultra-high molecular weight polymers via topochemical synthesis. Nature Communications, 2021, 12, 6818.	5.8	30
28	Elucidating the performance limits of perovskite nanocrystal light emitting diodes. Journal of Luminescence, 2020, 220, 116939.	1.5	19
29	Cucurbit[7]urilâ€Based Metal–Organic Rotaxane Framework for Dual apture of Molecular Iodine and Cationic Potassium Ion. Chemistry - A European Journal, 2020, 26, 2154-2158.	1.7	18
30	Water-Soluble 3D Covalent Organic Framework that Displays an Enhanced Enrichment Effect of Photosensitizers and Catalysts for the Reduction of Protons to H ₂ . ACS Applied Materials & Interfaces, 2020, 12, 1404-1411.	4.0	58
31	Singlet Fission in a <i>para</i> -Azaquinodimethane-Based Quinoidal Conjugated Polymer. Journal of the American Chemical Society, 2020, 142, 17892-17896.	6.6	26
32	Water-Soluble Flexible Organic Frameworks That Include and Deliver Proteins. Journal of the American Chemical Society, 2020, 142, 3577-3582.	6.6	54
33	Shape-Selective Synthesis of Pentacene Macrocycles and the Effect of Geometry on Singlet Fission. Journal of the American Chemical Society, 2020, 142, 19850-19855.	6.6	20
34	Improved Stability and Exciton Diffusion of Selfâ€Assembled 2D Lattices of Inorganic Perovskite Nanocrystals by Atomic Layer Deposition. Advanced Optical Materials, 2020, 8, 2000900.	3.6	6
35	Integrated linker-regulation and ring-fusion engineering for efficient additive-free non-fullerene organic solar cells. Journal of Materials Chemistry C, 2020, 8, 12516-12526.	2.7	18
36	Modular Design of Supramolecular Organic Frameworks for Imageâ€Guided Photodynamic Therapy. Advanced Functional Materials, 2020, 30, 2004452.	7.8	17

#	Article	IF	CITATIONS
37	Catalyst: Qubits from the Bottom Up. CheM, 2020, 6, 795-798.	5.8	9
38	Arene Substitution Design for Controlled Conformational Changes of Dibenzocycloocta-1,5-dienes. Journal of the American Chemical Society, 2020, 142, 16651-16660.	6.6	11
39	Substitution Effect on Thiobarbituric Acid End Groups for High Open-Circuit Voltage Non-Fullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 41852-41860.	4.0	14
40	Design and Synthesis of Annulated Benzothiadiazoles via Dithiolate Formation for Ambipolar Organic Semiconductors. ACS Applied Materials & Interfaces, 2020, 12, 53328-53341.	4.0	3
41	Resistive Switching Memory Performance of Two-Dimensional Polyimide Covalent Organic Framework Films. ACS Applied Materials & Interfaces, 2020, 12, 51837-51845.	4.0	57
42	Chemically Robust Covalent Organic Frameworks: Progress and Perspective. Matter, 2020, 3, 1507-1540.	5.0	94
43	Long-Range Exciton Diffusion in Two-Dimensional Assemblies of Cesium Lead Bromide Perovskite Nanocrystals. ACS Nano, 2020, 14, 6999-7007.	7.3	57
44	Pyrazine-Fused Porous Graphitic Framework-Based Mixed Matrix Membranes for Enhanced Gas Separations. ACS Applied Materials & Interfaces, 2020, 12, 16922-16929.	4.0	19
45	Employing a Narrow-Band-Gap Mediator in Ternary Solar Cells for Enhanced Photovoltaic Performance. ACS Applied Materials & Interfaces, 2020, 12, 16387-16393.	4.0	22
46	A highly substituted pyrazinophane generated from a quinoidal system <i>via</i> a cascade reaction. Chemical Communications, 2020, 56, 4472-4475.	2.2	9
47	Reversible Interlayer Sliding and Conductivity Changes in Adaptive Tetrathiafulvalene-Based Covalent Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 19054-19061.	4.0	40
48	A Woven Supramolecular Metalâ€Organic Framework Comprising a Ruthenium Bis(terpyridine) Complex and Cucurbit[8]uril: Enhanced Catalytic Activity toward Alcohol Oxidation. ChemPlusChem, 2020, 85, 1498-1503.	1.3	13
49	Expeditious synthesis of covalent organic frameworks: a review. Journal of Materials Chemistry A, 2020, 8, 16045-16060.	5.2	97
50	Dynamic Covalent Synthesis of Crystalline Porous Graphitic Frameworks. CheM, 2020, 6, 933-944.	5.8	123
51	Cesium–Lead Bromide Perovskite Nanoribbons with Two-Unit-Cell Thickness and Large Lateral Dimension for Deep-Blue Light Emission. ACS Applied Nano Materials, 2020, 3, 4826-4836.	2.4	8
52	Size Engineering of Metal–Organic Framework MIL-101(Cr)–Ag Hybrids for Photocatalytic CO ₂ Reduction. ACS Catalysis, 2019, 9, 8464-8470.	5.5	149
53	Improving the efficiencies of small molecule solar cells by solvent vapor annealing to enhance J-aggregation. Journal of Materials Chemistry C, 2019, 7, 9618-9624.	2.7	15
54	Charge-Transport Networks via Small-Molecule Self-Assembly in Conjugated Polymer Bulk Heterojunctions. Journal of Physical Chemistry C, 2019, 123, 27305-27316.	1.5	3

#	Article	IF	CITATIONS
55	Electronic Tuning of Mixed Quinoidalâ€Aromatic Conjugated Polyelectrolytes: Direct Ionic Substitution on Polymer Mainâ€Chains. Angewandte Chemie - International Edition, 2019, 58, 17978-17985.	7.2	32
56	CsPbBr ₃ Perovskite Nanocrystal Grown on MXene Nanosheets for Enhanced Photoelectric Detection and Photocatalytic CO ₂ Reduction. Journal of Physical Chemistry Letters, 2019, 10, 6590-6597.	2.1	275
57	A periodic metallo-supramolecular polymer from a flexible building block: self-assembly and photocatalysis for organic dye degradation. Science China Chemistry, 2019, 62, 1634-1638.	4.2	14
58	Stable luminous nanocomposites of CsPbX ₃ perovskite nanocrystals anchored on silica for multicolor anti-counterfeit ink and white-LEDs. Materials Chemistry Frontiers, 2019, 3, 414-419.	3.2	48
59	A high-spin ground-state donor-acceptor conjugated polymer. Science Advances, 2019, 5, eaav2336.	4.7	72
60	Low-dimensional perovskite nanoplatelet synthesis using <i>in situ</i> photophysical monitoring to establish controlled growth. Nanoscale, 2019, 11, 17262-17269.	2.8	18
61	A pore-expanded supramolecular organic framework and its enrichment of photosensitizers and catalysts for visible-light-induced hydrogen production. Organic Chemistry Frontiers, 2019, 6, 1698-1704.	2.3	22
62	Manipulating the Transition Dipole Moment of CsPbBr ₃ Perovskite Nanocrystals for Superior Optical Properties. Nano Letters, 2019, 19, 2489-2496.	4.5	60
63	Stable Luminous Nanocomposites of Confined Mn ²⁺ -Doped Lead Halide Perovskite Nanocrystals in Mesoporous Silica Nanospheres as Orange Fluorophores. Inorganic Chemistry, 2019, 58, 3950-3958.	1.9	34
64	The Critical Role of Electronâ€Donating Thiophene Groups on the Mechanical and Thermal Properties of Donor–Acceptor Semiconducting Polymers. Advanced Electronic Materials, 2019, 5, 1800899.	2.6	89
65	Stable Hydrazone-Linked Covalent Organic Frameworks Containing O,N,O′-Chelating Sites for Fe(III) Detection in Water. ACS Applied Materials & Interfaces, 2019, 11, 12830-12837.	4.0	152
66	Engineering the Photoluminescence of CsPbX ₃ (X = Cl, Br, and I) Perovskite Nanocrystals Across the Full Visible Spectra with the Interval of 1 nm. ACS Applied Materials & Interfaces, 2019, 11, 14256-14265.	4.0	66
67	In Situ Structure Characterization in Slotâ€Dieâ€Printed Allâ€Polymer Solar Cells with Efficiency Over 9%. Solar Rrl, 2019, 3, 1900032.	3.1	20
68	Low-temperature synthesis of all-inorganic perovskite nanocrystals for UV-photodetectors. Journal of Materials Chemistry C, 2019, 7, 5488-5496.	2.7	19
69	Functional Organic Semiconductors Based on Bayâ€Annulated Indigo (BAI). Chemical Record, 2019, 19, 1062-1077.	2.9	15
70	In Situ Loading and Delivery of Short Single- and Double-Stranded DNA by Supramolecular Organic Frameworks. CCS Chemistry, 2019, 1, 156-165.	4.6	50
71	Electronic Tuning of Mixed Quinoidalâ€Aromatic Conjugated Polyelectrolytes: Direct Ionic Substitution on Polymer Main hains. Angewandte Chemie, 2019, 131, 18146-18153.	1.6	2
72	An unprecedented 2D covalent organic framework with an htb net topology. Chemical Communications, 2019, 55, 13454-13457.	2.2	26

#	Article	IF	CITATIONS
73	Highly Stable Luminous "Snakes―from CsPbX ₃ Perovskite Nanocrystals Anchored on Amine-Coated Silica Nanowires. ACS Applied Nano Materials, 2019, 2, 258-266.	2.4	14
74	Enhancing the Efficiency of Organic Photovoltaics by a Photoactive Molecular Mediator. Solar Rrl, 2018, 2, 1700208.	3.1	5
75	A stable metal-covalent-supramolecular organic framework hybrid: enrichment of catalysts for visible light-induced hydrogen production. Science China Chemistry, 2018, 61, 830-835.	4.2	33
76	General Strategy for the Preparation of Stable Luminous Nanocomposite Inks Using Chemically Addressable CsPbX ₃ Peroskite Nanocrystals. Chemistry of Materials, 2018, 30, 2771-2780.	3.2	111
77	Molecular Engineering for Large Open-Circuit Voltage and Low Energy Loss in Around 10% Non-fullerene Organic Photovoltaics. ACS Energy Letters, 2018, 3, 1028-1035.	8.8	50
78	Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4345-4350.	3.3	207
79	Fundamental understanding of chemical processes in extreme ultraviolet resist materials. Journal of Chemical Physics, 2018, 149, 154305.	1.2	15
80	Extraordinary Redox Activities in Ladder-Type Conjugated Molecules Enabled by B ↕N Coordination-Promoted Delocalization and Hyperconjugation. Journal of the American Chemical Society, 2018, 140, 18173-18182.	6.6	63
81	Multiple Roles of a Non-fullerene Acceptor Contribute Synergistically for High-Efficiency Ternary Organic Photovoltaics. Joule, 2018, 2, 2154-2166.	11.7	85
82	Facile integration of low-cost black phosphorus in solution-processed organic solar cells with improved fill factor and device efficiency. Nano Energy, 2018, 53, 345-353.	8.2	39
83	Enhancing Hydrogen Generation Through Nanoconfinement of Sensitizers and Catalysts in a Homogeneous Supramolecular Organic Framework. Small, 2018, 14, e1801037.	5.2	44
84	Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks. Nature Communications, 2018, 9, 2998.	5.8	334
85	A low-bandgap dimeric porphyrin molecule for 10% efficiency solar cells with small photon energy loss. Journal of Materials Chemistry A, 2018, 6, 18469-18478.	5.2	40
86	Unraveling the Main Chain and Side Chain Effects on Thin Film Morphology and Charge Transport in Quinoidal Conjugated Polymers. Advanced Functional Materials, 2018, 28, 1801874.	7.8	53
87	In situ-prepared homogeneous supramolecular organic framework drug delivery systems (sof-DDSs): Overcoming cancer multidrug resistance and controlled release. Chinese Chemical Letters, 2017, 28, 798-806.	4.8	57
88	CsPb _{<i>x</i>} Mn _{1–<i>x</i>} Cl ₃ Perovskite Quantum Dots with High Mn Substitution Ratio. ACS Nano, 2017, 11, 2239-2247.	7.3	496
89	Loading-free supramolecular organic framework drug delivery systems (sof-DDSs) for doxorubicin: normal plasm and multidrug resistant cancer cell-adaptive delivery and release. Chinese Chemical Letters, 2017, 28, 893-899.	4.8	45
90	Oriented Covalent Organic Framework Film on Graphene for Robust Ambipolar Vertical Organic Field-Effect Transistor. Chemistry of Materials, 2017, 29, 4367-4374.	3.2	160

#	Article	IF	CITATIONS
91	Supramolecular organic frameworks (SOFs): homogeneous regular 2D and 3D pores in water. National Science Review, 2017, 4, 426-436.	4.6	108
92	Orientation transitions during the growth of imine covalent organic framework thin films. Journal of Materials Chemistry C, 2017, 5, 5090-5095.	2.7	35
93	Bifluoride-catalysed sulfur(VI) fluoride exchange reaction for the synthesis of polysulfates and polysulfonates. Nature Chemistry, 2017, 9, 1083-1088.	6.6	222
94	SuFExâ€Based Polysulfonate Formation from Ethenesulfonyl Fluoride–Amine Adducts. Angewandte Chemie - International Edition, 2017, 56, 11203-11208.	7.2	123
95	SuFExâ€Based Polysulfonate Formation from Ethenesulfonyl Fluoride–Amine Adducts. Angewandte Chemie, 2017, 129, 11355-11360.	1.6	34
96	Tunable Anisotropic Photon Emission from Self-Organized CsPbBr ₃ Perovskite Nanocrystals. Nano Letters, 2017, 17, 4534-4540.	4.5	66
97	In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [Pbl6]4â^' cage nanoparticles. Nature Communications, 2017, 8, 15688.	5.8	191
98	<i>para</i> -Azaquinodimethane: A Compact Quinodimethane Variant as an Ambient Stable Building Block for High-Performance Low Band Gap Polymers. Journal of the American Chemical Society, 2017, 139, 8355-8363.	6.6	65
99	Understanding Electron Transport in Disk-Shaped Triphenylene-Tris(naphthaleneimidazole)s through Structural Modification and Theoretical Investigation. ACS Applied Materials & Interfaces, 2017, 9, 20010-20019.	4.0	13
100	Templated self-assembly of one-dimensional CsPbX ₃ perovskite nanocrystal superlattices. Nanoscale, 2017, 9, 17688-17693.	2.8	39
101	Nanorod Suprastructures from a Ternary Graphene Oxide–Polymer–CsPbX ₃ Perovskite Nanocrystal Composite That Display High Environmental Stability. Nano Letters, 2017, 17, 6759-6765.	4.5	118
102	A Highly Crystalline Wide-Band-Gap Conjugated Polymer toward High-Performance As-Cast Nonfullerene Polymer Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 36061-36069.	4.0	34
103	Supramolecular basketry. Nature Chemistry, 2017, 9, 1037-1038.	6.6	20
104	Preventing Thin Film Dewetting via Graphene Capping. Advanced Materials, 2017, 29, 1701536.	11.1	23
105	One-Step Preparation of Cesium Lead Halide CsPbX ₃ (X = Cl, Br, and I) Perovskite Nanocrystals by Microwave Irradiation. ACS Applied Materials & Interfaces, 2017, 9, 42919-42927.	4.0	117
106	Postmodification of a supramolecular organic framework: visible-light-induced recyclable heterogeneous photocatalysis for the reduction of azides to amines. Chemical Communications, 2017, 53, 13367-13370.	2.2	42
107	A Yellow-Emitting Homoleptic Iridium(III) Complex Constructed from a Multifunctional Spiro Ligand for Highly Efficient Phosphorescent Organic Light-Emitting Diodes. Inorganic Chemistry, 2017, 56, 8397-8407.	1.9	23
108	Improved Hierarchical Ordering in Supramolecules via Symmetrically Bifunctionalized Organic Semiconductor. Macromolecules, 2016, 49, 2639-2645.	2.2	12

#	Article	IF	CITATIONS
109	Low Bandgap Conjugated Polymers Based on a Nature-Inspired Bay-Annulated Indigo (BAI) Acceptor as Stable Electrochromic Materials. ACS Sustainable Chemistry and Engineering, 2016, 4, 2797-2805.	3.2	64
110	Supramolecular organic frameworks: engineering periodicity in water through host–guest chemistry. Chemical Communications, 2016, 52, 6351-6362.	2.2	122
111	A polycationic covalent organic framework: a robust adsorbent for anionic dye pollutants. Polymer Chemistry, 2016, 7, 3392-3397.	1.9	159
112	Low Band Gap Coplanar Conjugated Molecules Featuring Dynamic Intramolecular Lewis Acid–Base Coordination. Journal of Organic Chemistry, 2016, 81, 4347-4352.	1.7	73
113	A tristable [2]rotaxane that is doubly gated by foldamer and azobenzene kinetic barriers. Chemical Communications, 2016, 52, 7490-7493.	2.2	19
114	Stepwise Bay Annulation of Indigo for the Synthesis of Desymmetrized Electron Acceptors and Donor–Acceptor Constructs. Organic Letters, 2016, 18, 5224-5227.	2.4	28
115	Insight into the Ligand-Mediated Synthesis of Colloidal CsPbBr ₃ Perovskite Nanocrystals: The Role of Organic Acid, Base, and Cesium Precursors. ACS Nano, 2016, 10, 7943-7954.	7.3	713
116	Rationally Designed 2D Covalent Organic Framework with a Brick-Wall Topology. ACS Macro Letters, 2016, 5, 1348-1352.	2.3	59
117	Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells. Nature Communications, 2016, 7, 12446.	5.8	139
118	Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H2 production. Nature Communications, 2016, 7, 11580.	5.8	198
119	Quinolyl functionalized spiro[fluorene-9,9′-xanthene] host materials with bipolar characteristics for green and red phosphorescent organic light-emitting diodes. Organic Electronics, 2016, 36, 140-147.	1.4	17
120	Highâ€Performance Inverted Planar Heterojunction Perovskite Solar Cells Based on Lead Acetate Precursor with Efficiency Exceeding 18%. Advanced Functional Materials, 2016, 26, 3508-3514.	7.8	176
121	Weaving of organic threads into a crystalline covalent organic framework. Science, 2016, 351, 365-369.	6.0	427
122	N-Doped Ordered Mesoporous Carbon Originated from a Green Biological Dye for Electrochemical Sensing and High-Pressure CO ₂ Storage. ACS Applied Materials & Interfaces, 2016, 8, 918-926.	4.0	30
123	pH-Responsive single-layer honeycomb supramolecular organic frameworks that exhibit antimicrobial activity. Polymer Chemistry, 2016, 7, 1861-1865.	1.9	45
124	Rational tuning of high-energy visible light absorption for panchromatic small molecules by a two-dimensional conjugation approach. Chemical Science, 2016, 7, 3857-3861.	3.7	25
125	miR-98 and its host gene Huwe1 target Caspase-3 in Silica nanoparticles-treated male germ cells. Scientific Reports, 2015, 5, 12938.	1.6	19
126	A divergent route to core- and peripherally functionalized diazacoronenes that act as colorimetric and fluorescence proton sensors. Chemical Science, 2015, 6, 3180-3186.	3.7	66

#	Article	IF	CITATIONS
127	Structural diversity in binary superlattices self-assembled from polymer-grafted nanocrystals. Nature Communications, 2015, 6, 10052.	5.8	199
128	The substituent group effect on the morphology and memory performance of phenazine derivatives. Journal of Materials Chemistry C, 2015, 3, 3167-3172.	2.7	19
129	Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure Vapor Annealing. Journal of Physical Chemistry Letters, 2015, 6, 493-499.	2.1	112
130	The Organic Flatland—Recent Advances in Synthetic 2D Organic Layers. Advanced Materials, 2015, 27, 5762-5770.	11.1	162
131	Highly thermally stable hydrogels derived from monolayered two-dimensional supramolecular polymers. Polymer Chemistry, 2015, 6, 3018-3023.	1.9	38
132	From non-detectable to decent: replacement of oxygen with sulfur in naphthalene diimide boosts electron transport in organic thin-film transistors (OTFT). Journal of Materials Chemistry C, 2015, 3, 8219-8224.	2.7	49
133	Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging. Nanoscale, 2015, 7, 18424-18428.	2.8	95
134	Electronic and Morphological Studies of Conjugated Polymers Incorporating a Disk-Shaped Polycyclic Aromatic Hydrocarbon Unit. ACS Applied Materials & Interfaces, 2015, 7, 20034-20045.	4.0	8
135	N-Heteroheptacenequinone and N-heterononacenequinone: synthesis, physical properties, crystal structures and photoelectrochemical behaviors. Journal of Materials Chemistry C, 2015, 3, 9877-9884.	2.7	23
136	Toward Conductive Mesocrystalline Assemblies: PbS Nanocrystals Cross-Linked with Tetrathiafulvalene Dicarboxylate. Chemistry of Materials, 2015, 27, 8105-8115.	3.2	32
137	Three-dimensional periodic supramolecular organic framework ion sponge in water and microcrystals. Nature Communications, 2014, 5, 5574.	5.8	196
138	A three-dimensional cross-linking supramolecular polymer stabilized by the cooperative dimerization of the viologen radical cation. Polymer Chemistry, 2014, 5, 341-345.	1.9	48
139	Enhancing the Performance of Solutionâ€Processed nâ€Type Organic Fieldâ€Effect Transistors by Blending with Molecular "Aligners― Advanced Materials, 2014, 26, 1223-1228.	11.1	26
140	A two-dimensional single-layer supramolecular organic framework that is driven by viologen radical cation dimerization and further promoted by cucurbit[8]uril. Polymer Chemistry, 2014, 5, 4715-4721.	1.9	106
141	Selfâ€Assembly of Threeâ€Dimensional Supramolecular Polymers through Cooperative Tetrathiafulvalene Radical Cation Dimerization. Chemistry - A European Journal, 2014, 20, 575-584.	1.7	45
142	Tetrathiafulvaleneâ€Based Macrocycles Formed by Radical Cation Dimerization: The Role of Intramolecular Hydrogen Bonding and Solvent. Chemistry - an Asian Journal, 2014, 9, 1039-1044.	1.7	24
143	Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework. Chemical Science, 2014, 5, 4693-4700.	3.7	295
144	Solvent-driven selective ï€-cation templating in dynamic assembly of interlocked molecules. Organic Chemistry Frontiers, 2014, 1, 167-175.	2.3	21

#	Article	IF	CITATIONS
145	Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345, 542-546.	6.0	5,936
146	Solutionâ€Processable Donor–Acceptor Polymers with Modular Electronic Properties and Very Narrow Bandgaps. Macromolecular Rapid Communications, 2014, 35, 1516-1521.	2.0	23
147	New Form of an Old Natural Dye: Bay-Annulated Indigo (BAI) as an Excellent Electron Accepting Unit for High Performance Organic Semiconductors. Journal of the American Chemical Society, 2014, 136, 15093-15101.	6.6	123
148	PbS Nanoparticles Capped with Tetrathiafulvalenetetracarboxylate: Utilizing Energy Level Alignment for Efficient Carrier Transport. ACS Nano, 2014, 8, 2532-2540.	7.3	41
149	Thiophene Fused Azacoronenes: Regioselective Synthesis, Self-Organization, Charge Transport and Its Incorporation in Conjugated Polymers. Chemistry of Materials, 2014, 26, 3920-3927.	3.2	68
150	Nonmonotonic Size Dependence in the Hole Mobility of Methoxide-Stabilized PbSe Quantum Dot Solids. ACS Nano, 2013, 7, 6774-6781.	7.3	32
151	Growth of rylene diimide crystalline layers on aminoalkyl triethoxysilane-monolayers for organic field effect transistor applications. Journal of Materials Chemistry C, 2013, 1, 6661.	2.7	4
152	A Dynamic Route to Structure and Function: Recent Advances in Imine-Based Organic Nanostructured Materials. Australian Journal of Chemistry, 2013, 66, 9.	0.5	35
153	Toward a Single-Layer Two-Dimensional Honeycomb Supramolecular Organic Framework in Water. Journal of the American Chemical Society, 2013, 135, 17913-17918.	6.6	349
154	Cooperative Reorganization of Mineral and Template during Directed Nucleation of Calcium Carbonate. Journal of Physical Chemistry C, 2013, 117, 11076-11085.	1.5	15
155	Facile Route to an Allâ€Organic, Triply Threaded, Interlocked Structure by Templated Dynamic Clipping. Angewandte Chemie - International Edition, 2012, 51, 13119-13122.	7.2	40
156	Synthesis and Properties of Bisphospholeâ€Bridged Ladder Oligophenylenes. Chemistry - an Asian Journal, 2012, 7, 2615-2620.	1.7	25
157	Crystal Structure and Phototransistor Behavior of N-Substituted Heptacence. ACS Applied Materials & Interfaces, 2012, 4, 1883-1886.	4.0	118
158	A complementary disk-shaped π electron donor–acceptor pair with high binding affinity. Chemical Science, 2012, 3, 2009.	3.7	33
159	Synthesis and Structure Characterization of a Stable Nonatwistacene. Angewandte Chemie - International Edition, 2012, 51, 6094-6098.	7.2	199
160	"Clean Reaction―Strategy to Approach a Stable, Green Heptatwistacene Containing a Single Terminal Pyrene Unit. Chemistry - an Asian Journal, 2012, 7, 672-675.	1.7	98
161	Foldamers in pseudo[2]rotaxanes and [2]rotaxanes: tuning the switching kinetics and metastability. Tetrahedron, 2012, 68, 4517-4527.	1.0	20
162	CHâ‹â‹O Hydrogen Bonding Induced Triazole Foldamers: Efficient Halogen Bonding Receptors for Organohalogens. Angewandte Chemie - International Edition, 2012, 51, 1657-1661.	7.2	95

#	Article	IF	CITATIONS
163	Charge Transport Anisotropy in <i>n</i> -Type Disk-Shaped Triphenylene-Tris(aroyleneimidazole)s. Organic Letters, 2011, 13, 6528-6531.	2.4	42
164	Enhanced Stability of Janus Nanoparticles by Covalent Cross-Linking of Surface Ligands. Langmuir, 2011, 27, 14581-14588.	1.6	19
165	Diketopyrrolopyrrole-Containing Oligothiophene-Fullerene Triads and Their Use in Organic Solar Cells. ACS Applied Materials & Interfaces, 2011, 3, 2275-2280.	4.0	58
166	Novel C3-symmetric n-type tris(aroyleneimidazole) and its analogs: synthesis, physical properties and self-assembly. Chemical Communications, 2011, 47, 3454.	2.2	23
167	Sulfated Ligands for the Copper(I) atalyzed Azide–Alkyne Cycloaddition. Chemistry - an Asian Journal, 2011, 6, 2796-2802.	1.7	95
168	Tracking <i>N</i> â€Acetyllactosamine on Cellâ€Surface Glycans Inâ€Vivo. Angewandte Chemie - International Edition, 2011, 50, 4113-4118.	7.2	81
169	Increasing the Efficacy of Bioorthogonal Click Reactions for Bioconjugation: A Comparative Study. Angewandte Chemie - International Edition, 2011, 50, 8051-8056.	7.2	370
170	Foldamerâ€Tuned Switching Kinetics and Metastability of [2]Rotaxanes. Angewandte Chemie - International Edition, 2011, 50, 9866-9870.	7.2	51
171	Probing Donorâ^'Acceptor Interactions and <i>Co</i> -Conformational Changes in Redox Active Desymmetrized [2]Catenanes. Journal of the American Chemical Society, 2010, 132, 1110-1122.	6.6	96
172	Biocompatible Copper(I) Catalysts for in Vivo Imaging of Glycans. Journal of the American Chemical Society, 2010, 132, 16893-16899.	6.6	350
173	Dual Selectivity Expressed in [2 + 2 + 1] Dynamic Clipping of Unsymmetrical [2]Catenanes. Organic Letters, 2010, 12, 1528-1531.	2.4	37
174	Multilayered nanofibers from stacks of single-molecular thick nanosheets of hexakis(alkoxy)triphenylenes. Chemical Communications, 2010, 46, 8579.	2.2	14
175	Molecular Muscle based Nano-Electro-Mechanical-Systems (NEMS). , 2009, , .		0
176	Linear Ï€â€Acceptorâ€Templated Dynamic Clipping to Macrobicycles and [2]Rotaxanes. Angewandte Chemie - International Edition, 2009, 48, 4185-4189.	7.2	89
177	Alternative Donorâ^'Acceptor Stacks from Crown Ethers and Naphthalene Diimide Derivatives: Rapid, Selective Formation from Solution and Solid State Grinding. Journal of the American Chemical Society, 2009, 131, 2078-2079.	6.6	103
178	A Mechanical Actuator Driven Electrochemically by Artificial Molecular Muscles. ACS Nano, 2009, 3, 291-300.	7.3	241
179	Ï€â€&tacking Enhanced Dynamic and Redoxâ€&witchable Selfâ€Assembly of Donor–Acceptor Metalloâ€{2]Catenanes from Diimide Derivatives and Crown Ethers. Chemistry - A European Journal, 2008, 14, 10211-10218.	1.7	43
180	Palladium(II)-Directed Self-Assembly of Dynamic Donorâ^'Acceptor [2]Catenanes. Organic Letters, 2008, 10, 765-768.	2.4	66

#	Article	IF	CITATIONS
181	Design and Optimization of Molecular Nanovalves Based on Redox-Switchable Bistable Rotaxanes. Journal of the American Chemical Society, 2007, 129, 626-634.	6.6	389
182	Enhancing the reactivity of 1,2,3-triazoles in "click―macrocycles by face-to-face dibenzylammonium ion binding. Chemical Communications, 2007, , 4773.	2.2	6
183	A Molecular Plugâ^'Socket Connector. Journal of the American Chemical Society, 2007, 129, 4633-4642.	6.6	47
184	Templated Synthesis of Desymmetrized [2]Catenanes with Excellent Translational Selectivityâ€. Organic Letters, 2007, 9, 2577-2580.	2.4	31
185	Versatile Supramolecular Nanovalves Reconfigured for Light Activation. Advanced Functional Materials, 2007, 17, 2101-2110.	7.8	196
186	Using Molecular Force to Overcome Steric Barriers in a Springlike Molecular Ouroboros**. Advanced Functional Materials, 2007, 17, 751-762.	7.8	39
187	Self-assembled ring-in-ring complexes from metal–ligand coordination macrocycles and β-cyclodextrin. Tetrahedron Letters, 2007, 48, 3871-3874.	0.7	31
188	Click chemistry in materials synthesis. III. Metalâ€adhesive polymers from Cu(I) atalyzed azide–alkyne cycloaddition. Journal of Polymer Science Part A, 2007, 45, 5182-5189.	2.5	95
189	Understanding and harnessing biomimetic molecular machines for NEMS actuation materials. IEEE Transactions on Automation Science and Engineering, 2006, 3, 254-259.	3.4	20
190	Photoinduced electron flow in a self-assembling supramolecular extension cable. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18411-18416.	3.3	62
191	Nano Meccano. , 2006, , 193-214.		0
192	Linear Artificial Molecular Muscles. Journal of the American Chemical Society, 2005, 127, 9745-9759.	6.6	660
193	Donor-Acceptor Pretzelanes and a Cyclic Bis[2]catenane Homologue. Angewandte Chemie - International Edition, 2005, 44, 3050-3055.	7.2	57
194	Versatile Self-Complexing Compounds Based on Covalently Linked Donor-Acceptor Cyclophanes. Chemistry - A European Journal, 2005, 11, 369-385.	1.7	69
195	Template-Directed Syntheses of Configurable and Reconfigurable Molecular Switches. Synthesis, 2005, 2005, 3437-3445.	1.2	5
196	Dynamic Chirality in Donorâ [~] Acceptor Pretzelanes. Journal of Organic Chemistry, 2005, 70, 9334-9344.	1.7	30
197	A reversible molecular valve. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10029-10034.	3.3	452
198	Conformational diastereoisomerism in a chiral pretzelane. Chemical Communications, 2005, , 3927.	2.2	25

#	Article	IF	CITATIONS
199	Thermally and Electrochemically Controllable Self-Complexing Molecular Switches. Journal of the American Chemical Society, 2004, 126, 9150-9151.	6.6	116
200	A nanomechanical device based on linear molecular motors. Applied Physics Letters, 2004, 85, 5391-5393.	1.5	210
201	Noncovalent Side-Wall Functionalization of Single-Walled Carbon Nanotubes. Macromolecules, 2003, 36, 553-560.	2.2	289
202	A facile route to poly[1-(2,4,6-trichlorophenyl)-1H-1,2,4-triazol-5-yl]alkane derivatives. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 991-995.	1.3	2
203	The crystal structure of 9â€chloroâ€4,5â€dihydroâ€2â€ethylâ€1â€{2,4,6â€trichlorophenyl)â€1 <i>H</i> â€1,2,4â€triazolo[3,2â€ <i>d</i> hexachloroantimonate. Journal of Heterocyclic Chemistry, 2000, 37, 287-290.][1, 5]â€b	enzoxazepin
204	An Efficient Approach to the [1,2,4]-Triazolo[3,2-d][1,5]Benzoxazepine Skeleton-A Novel Tricyclic Ring System. Synthetic Communications, 2000, 30, 119-130.	1.1	11
205	Templated Synthesis of Interlocked Molecules. Topics in Current Chemistry, 0, , 203-259.	4.0	176
206	Selfâ€Assembly of a Bilayer 2D Supramolecular Organic Framework in Water. Angewandte Chemie, 0, , .	1.6	2