Tânia C S P Pires

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4289034/publications.pdf

Version: 2024-02-01

28 papers 927 citations

16 h-index 26 g-index

28 all docs 28 docs citations

times ranked

28

1200 citing authors

#	Article	IF	CITATIONS
1	Development of new bilberry (Vaccinium myrtillus L.) based snacks: Nutritional, chemical and bioactive features. Food Chemistry, 2021, 334, 127511.	8.2	12
2	Phytochemical Characterization and Evaluation of Bioactive Properties of Tisanes Prepared from Promising Medicinal and Aromatic Plants. Foods, 2021, 10, 475.	4.3	4
3	Phenolic Compounds and Bioactive Properties of Ruscus aculeatus L. (Asparagaceae): The Pharmacological Potential of an Underexploited Subshrub. Molecules, 2021, 26, 1882.	3.8	7
4	Valorization of Cereal By-Products from the Milling Industry as a Source of Nutrients and Bioactive Compounds to Boost Resource-Use Efficiency. Agronomy, 2021, 11, 972.	3.0	4
5	Differences in the phenolic composition and nutraceutical properties of freeze dried and oven-dried wild and domesticated samples of Sanguisorba minor Scop. LWT - Food Science and Technology, 2021, 145, 111335.	5.2	6
6	Bioactive Compound Profiling and Nutritional Composition of Three Species from the Amaranthaceae Family., 2021, 5, .		3
7	Phenolic Compounds from Amaranthaceae Family as Potential Antitumor and Antibacterial Drugs. , 2021, 9, .		0
8	Chemical and Bioactive Characterization of the Essential Oils Obtained from Three Mediterranean Plants. Molecules, 2021, 26, 7472.	3.8	16
9	Extraction of Anthocyanins from Red Raspberry for Natural Food Colorants Development: Processes Optimization and In Vitro Bioactivity. Processes, 2020, 8, 1447.	2.8	28
10	Vaccinium myrtillus L. Fruits as a Novel Source of Phenolic Compounds with Health Benefits and Industrial Applications - A Review. Current Pharmaceutical Design, 2020, 26, 1917-1928.	1.9	59
11	Extracts from <i>Vaccinium myrtillus</i> L. fruits as a source of natural colorants: chemical characterization and incorporation in yogurts. Food and Function, 2020, 11, 3227-3234.	4.6	8
12	Characterization and Application of Pomegranate Epicarp Extracts as Functional Ingredients in a Typical Brazilian Pastry Product. Molecules, 2020, 25, 1481.	3.8	11
13	Chemical and bioactive characterization of the aromatic plant <i>Levisticum officinale </i> W.D.J. Koch: a comprehensive study. Food and Function, 2020, 11, 1292-1303.	4.6	61
14	Nutritional, chemical and bioactive profiles of different parts of a Portuguese common fig (Ficus) Tj ETQq0 0 0 rg	BT/Qverlo	ock ₄ 10 Tf 50 2
15	Edible flowers: Emerging components in the diet. Trends in Food Science and Technology, 2019, 93, 244-258.	15.1	81
16	Rubus ulmifolius Schott fruits: A detailed study of its nutritional, chemical and bioactive properties. Food Research International, 2019, 119, 34-43.	6.2	32
17	Rubus ulmifolius Schott as a Novel Source of Food Colorant: Extraction Optimization of Coloring Pigments and Incorporation in a Bakery Product. Molecules, 2019, 24, 2181.	3.8	23
18	Phenolic profile and effects of acetone fractions obtained from the inflorescences of Calluna vulgaris (L.) Hull on vaginal pathogenic and non-pathogenic bacteria. Food and Function, 2019, 10, 2399-2407.	4.6	6

#	Article	IF	Citations
19	Phenolic profile, antioxidant and antibacterial properties of Juglans regia L. (walnut) leaves from the Northeast of Portugal. Industrial Crops and Products, 2019, 134, 347-355.	5.2	41
20	Chemical composition and bioactive properties of the wild edible plant Raphanus raphanistrum L. Food Research International, 2019, 121, 714-722.	6.2	28
21	Edible flowers as sources of phenolic compounds with bioactive potential. Food Research International, 2018, 105, 580-588.	6.2	151
22	Antioxidant and antimicrobial properties of dried Portuguese apple variety (Malus domestica Borkh.) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
23	Bioactive properties and phytochemical assessment of Bacupari-an \tilde{A} £o (Garcinia brasiliensis Mart.) leaves native to Rond \tilde{A} nia, Brazil. Food and Function, 2018, 9, 5621-5628.	4.6	9
24	Incorporation of natural colorants obtained from edible flowers in yogurts. LWT - Food Science and Technology, 2018, 97, 668-675.	5. 2	50
25	Phenolic profile and <i>in vitro</i> bioactive potential of Saharan <i>Juniperus phoenicea</i> L. and <i>Cotula cinerea</i> (Del) growing in Algeria. Food and Function, 2018, 9, 4664-4672.	4.6	16
26	Phenolic compounds profile, nutritional compounds and bioactive properties of Lycium barbarum L.: A comparative study with stems and fruits. Industrial Crops and Products, 2018, 122, 574-581.	5.2	43
27	Nutritional and chemical characterization of edible petals and corresponding infusions: Valorization as new food ingredients. Food Chemistry, 2017, 220, 337-343.	8.2	88
28	Bioactive Properties of Tabebuia impetiginosa-Based Phytopreparations and Phytoformulations: A Comparison between Extracts and Dietary Supplements. Molecules, 2015, 20, 22863-22871.	3.8	19