Albina Y Borisevich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4288784/publications.pdf

Version: 2024-02-01

220 papers 9,770 citations

26567 56 h-index 95 g-index

226 all docs

226 docs citations

times ranked

226

11298 citing authors

#	Article	IF	CITATIONS
1	Palladium-tin catalysts for the direct synthesis of H ₂ O ₂ with high selectivity. Science, 2016, 351, 965-968.	6.0	465
2	Direct Sub-Angstrom Imaging of a Crystal Lattice. Science, 2004, 305, 1741-1741.	6.0	463
3	Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO ₃ films. Science, 2015, 348, 547-551.	6.0	430
4	CulnP ₂ S ₆ Room Temperature Layered Ferroelectric. Nano Letters, 2015, 15, 3808-3814.	4.5	328
5	Suppression of Octahedral Tilts and Associated Changes in Electronic Properties at Epitaxial Oxide Heterostructure Interfaces. Physical Review Letters, 2010, 105, 087204.	2.9	308
6	Spectroscopic Imaging of Single Atoms Within a Bulk Solid. Physical Review Letters, 2004, 92, 095502.	2.9	299
7	Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface. Nature Materials, 2013, 12, 397-402.	13.3	283
8	Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level. Nature Materials, 2012, 11, 888-894.	13.3	282
9	Direct observation of ferroelectric field effect andÂvacancy-controlled screening at the BiFeO3/LaxSr1â^'xMnO3 interface. Nature Materials, 2014, 13, 1019-1025.	13.3	218
10	A Sacrificial Coating Strategy Toward Enhancement of Metal–Support Interaction for Ultrastable Au Nanocatalysts. Journal of the American Chemical Society, 2016, 138, 16130-16139.	6.6	217
11	Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3044-3048.	3.3	216
12	Control of Octahedral Tilts and Magnetic Properties of Perovskite Oxide Heterostructures by Substrate Symmetry. Physical Review Letters, 2010, 105, 227203.	2.9	211
13	Dopants adsorbed as single atoms prevent degradation of catalysts. Nature Materials, 2004, 3, 143-146.	13.3	199
14	MATERIALS CHARACTERIZATION IN THE ABERRATION-CORRECTED SCANNING TRANSMISSION ELECTRON MICROSCOPE. Annual Review of Materials Research, 2005, 35, 539-569.	4.3	188
15	Crystal Chemistry of Complex Perovskites: New Cation-Ordered Dielectric Oxides. Annual Review of Materials Research, 2008, 38, 369-401.	4.3	177
16	Mapping Octahedral Tilts and Polarization Across a Domain Wall in BiFeO ₃ from Z-Contrast Scanning Transmission Electron Microscopy Image Atomic Column Shape Analysis. ACS Nano, 2010, 4, 6071-6079.	7.3	150
17	Atomic-scale evolution of modulated phases at the ferroelectric–antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction. Nature Communications, 2012, 3, 775.	5.8	145
18	Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy. Nature, 2021, 595, 245-249.	13.7	141

#	Article	IF	CITATIONS
19	Oxygen Reduction Kinetics Enhancement on a Heterostructured Oxide Surface for Solid Oxide Fuel Cells. Journal of Physical Chemistry Letters, 2010, 1, 3149-3155.	2.1	136
20	Point Defect Configurations of Supersaturated Au Atoms Inside Si Nanowires. Nano Letters, 2008, 8, 1016-1019.	4.5	119
21	Evaluation of microstructure and mechanical property variations in AlxCoCrFeNi high entropy alloys produced by a high-throughput laser deposition method. Intermetallics, 2018, 95, 110-118.	1.8	107
22	Interplay of Octahedral Tilts and Polar Order in BiFeO ₃ Films. Advanced Materials, 2013, 25, 2497-2504.	11.1	101
23	Nitrogen: unraveling the secret to stable carbon-supported Pt-alloy electrocatalysts. Energy and Environmental Science, 2013, 6, 2957.	15.6	99
24	Directing Matter: Toward Atomic-Scale 3D Nanofabrication. ACS Nano, 2016, 10, 5600-5618.	7.3	99
25	Crystalline Structure and Dielectric Properties of Li _{1+<i>xâ^'y</i>} Nb _{1â^'<i>xa^'y</i>} Ti _{<i>x</i>+4<i>y</i>} O _{3 Solid Solutions. Journal of the American Ceramic Society, 2002, 85, 573-578.}	b> <i></i>	M ∮& â€Phas
26	The observation of square ice in graphene questioned. Nature, 2015, 528, E1-E2.	13.7	95
27	Microwave dielectric properties of Li1+x–yM1–x–3yTix+4yO3 (M=Nb5+, Ta5+) solid solutions. Journal of the European Ceramic Society, 2001, 21, 1719-1722.	2.8	91
28	Aberration-corrected scanning transmission electron microscopy: from atomic imaging and analysis to solving energy problems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 3709-3733.	1.6	89
29	<i>In Situ</i> Observation of Oxygen Vacancy Dynamics and Ordering in the Epitaxial LaCoO ₃ System. ACS Nano, 2017, 11, 6942-6949.	7.3	89
30	Beyond Condensed Matter Physics on the Nanoscale: The Role of Ionic and Electrochemical Phenomena in the Physical Functionalities of Oxide Materials. ACS Nano, 2012, 6, 10423-10437.	7.3	88
31	Atomically Resolved Mapping of Polarization and Electric Fields Across Ferroelectric/Oxide Interfaces by Zâ€contrast Imaging. Advanced Materials, 2011, 23, 2474-2479.	11.1	79
32	Fire up the atom forge. Nature, 2016, 539, 485-487.	13.7	79
33	Towards 3D Mapping of BO ₆ Octahedron Rotations at Perovskite Heterointerfaces, Unit Cell by Unit Cell. ACS Nano, 2015, 9, 8412-8419.	7.3	78
34	Distribution of histone H3.3 in hematopoietic cell lineages. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 574-579.	3.3	75
35	Conductivity of twin-domain-wall/surface junctions in ferroelastics: Interplay of deformation potential, octahedral rotations, improper ferroelectricity, and flexoelectric coupling. Physical Review B, 2012, 86, .	1.1	74
36	Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets. Advanced Structural and Chemical Imaging, 2015, 1, 6.	4.0	74

#	Article	IF	CITATIONS
37	Depth sectioning of aligned crystals with the aberration-corrected scanning transmission electron microscope. Journal of Electron Microscopy, 2006, 55, 7-12.	0.9	73
38	Nanoscale Structural and Chemical Properties of Antipolar Clusters in Sm-Doped BiFeO < sub > 3 < / sub > Ferroelectric Epitaxial Thin Films. Chemistry of Materials, 2010, 22, 2588-2596.	3.2	73
39	Atomicâ€Level Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision. Small, 2015, 11, 5895-5900.	5.2	73
40	Atomic Structure and Electrical Activity of Grain Boundaries and Ruddlesden–Popper Faults in Cesium Lead Bromide Perovskite. Advanced Materials, 2019, 31, e1805047.	11.1	72
41	Spatial resolution, information limit, and contrast transfer in piezoresponse force microscopy. Nanotechnology, 2006, 17, 3400-3411.	1.3	71
42	Ultrathin limit and dead-layer effects in local polarization switching of BiFeO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> . Physical Review B, 2012, 85, .	1.1	71
43	Dimensionality Controlled Octahedral Symmetry-Mismatch and Functionalities in Epitaxial LaCoO ₃ /SrTiO ₃ Heterostructures. Nano Letters, 2015, 15, 4677-4684.	4.5	71
44	Effect of V ₂ O ₅ Doping on the Sintering and Dielectric Properties of <i>M</i> â€Phase Li _{1+<i>x</i>â^'<i>y</i>} Nb _{1â^'<i>x</i>â^'3<i>y</i>} Ti _{<i>x</i>+4<i>y</i>} O Ceramics. Journal of the American Ceramic Society, 2004, 87, 1047-1052.	_{3<td>ub⁷⁰</td>}	ub ⁷⁰
45	Evolution of gold structure during thermal treatment of Au/FeOx catalysts revealed by aberration-corrected electron microscopy. Journal of Electron Microscopy, 2009, 58, 199-212.	0.9	70
46	Interface Engineering of Domain Structures in BiFeO ₃ Thin Films. Nano Letters, 2017, 17, 486-493.	4.5	69
47	Origin of Anomalous Pt-Pt Distances in the Pt/Alumina Catalytic System. ChemPhysChem, 2004, 5, 1893-1897.	1.0	68
48	Large-scale synthesis of arrays of high-aspect-ratio rigid vertically aligned carbon nanofibres. Nanotechnology, 2003, 14, 1029-1035.	1.3	67
49	High- <i>T</i> _{<} Layered Ferrielectric Crystals by Coherent Spinodal Decomposition. ACS Nano, 2015, 9, 12365-12373.	7.3	67
50	Identification of phases, symmetries and defects through local crystallography. Nature Communications, 2015, 6, 7801.	5.8	63
51	Defectâ€Mediated Polarization Switching in Ferroelectrics and Related Materials: From Mesoscopic Mechanisms to Atomistic Control. Advanced Materials, 2010, 22, 314-322.	11.1	62
52	Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography. Scientific Reports, 2016, 6, 26348.	1.6	62
53	Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation. Nature Communications, 2016, 7, 12905.	5.8	62
54	Graphene-Analogues Boron Nitride Nanosheets Confining Ionic Liquids: A High-Performance Quasi-Liquid Solid Electrolyte. Small, 2016, 12, 3535-3542.	5.2	62

#	Article	IF	Citations
55	Dynamic scan control in STEM: spiral scans. Advanced Structural and Chemical Imaging, 2016, 2, .	4.0	59
56	Communicating with wireless perovskites: cation order and zinc volatilization. Journal of the European Ceramic Society, 2003, 23, 2461-2466.	2.8	58
57	Finite size and intrinsic field effect on the polar-active properties of ferroelectric-semiconductor heterostructures. Physical Review B, 2010, 81, .	1.1	57
58	Watching domains grow: $\langle i \rangle$ In-situ $\langle i \rangle$ studies of polarization switching by combined scanning probe and scanning transmission electron microscopy. Journal of Applied Physics, 2011, 110, .	1.1	57
59	Interface dipole between two metallic oxides caused by localized oxygen vacancies. Physical Review B, 2012, 86, .	1.1	56
60	Cation–Eutectic Transition <i>via</i> Sublattice Melting in CulnP ₂ 5 ₆ 6/ln _{4/3} P ₂ S ₆ van der Waals Layered Crystals. ACS Nano, 2017, 11, 7060-7073.	7.3	54
61	Oxygen-Vacancy-Induced Polar Behavior in (LaFeO3)2/(SrFeO3) Superlattices. Nano Letters, 2014, 14, 2694-2701.	4.5	53
62	Structural Study of Li1+xâ^'yNb1â^'xâ^'3yTix+4yO3 Solid Solutions. Journal of Solid State Chemistry, 2002, 166, 81-90.	1.4	51
63	Direct Observation of Inherent Atomicâ€Scale Defect Disorders responsible for Highâ€Performance Ti _{1â^'} <i>_x</i> Halfâ€Heusler Thermoelectric Alloys. Advanced Materials, 2017, 29, 1702091.	> <sub.ay< <="" td=""><td>sub#9:/i></td></sub.ay<>	sub#9:/i>
64	Better Catalysts through Microscopy: Mesoscale M1/M2 Intergrowth in Molybdenum–Vanadium Based Complex Oxide Catalysts for Propane Ammoxidation. ACS Nano, 2015, 9, 3470-3478.	7.3	47
65	Bis(trimethylsilyl) 2-fluoromalonate derivatives as electrolyte additives for high voltage lithium ion batteries. Journal of Power Sources, 2019, 412, 527-535.	4.0	47
66	Direct atomic fabrication and dopant positioning in Si using electron beams with active real-time image-based feedback. Nanotechnology, 2018, 29, 255303.	1.3	46
67	KBaTeBiO ₆ : A Lead-Free, Inorganic Double-Perovskite Semiconductor for Photovoltaic Applications. Chemistry of Materials, 2019, 31, 4769-4778.	3.2	46
68	Oxygen-Induced Surface Reconstruction of SrRuO ₃ and Its Effect on the BaTiO ₃ Interface. ACS Nano, 2010, 4, 4190-4196.	7.3	44
69	Quantitative comparison of bright field and annular bright field imaging modes for characterization of oxygen octahedral tilts. Ultramicroscopy, 2017, 181, 1-7.	0.8	43
70	Misfit accommodation in oxide thin film heterostructures. Acta Materialia, 2013, 61, 2725-2733.	3.8	42
71	Impact of symmetry on the ferroelectric properties of CaTiO3 thin films. Applied Physics Letters, 2015, 106, .	1.5	42
72	Significantly Enhanced Emission Stability of CsPbBr ₃ Nanocrystals via Chemically Induced Fusion Growth for Optoelectronic Devices. ACS Applied Nano Materials, 2018, 1, 6091-6098.	2.4	42

#	Article	IF	Citations
73	Characterizing the Two- and Three-Dimensional Resolution of an Improved Aberration-Corrected STEM. Microscopy and Microanalysis, 2009, 15, 441-453.	0.2	40
74	The Effect of Polar Fluctuation and Lattice Mismatch on Carrier Mobility at Oxide Interfaces. Nano Letters, 2016, 16, 2307-2313.	4.5	39
75	Room Temperature Ferrimagnetism and Ferroelectricity in Strained, Thin Films of BiFe _{0.5} Mn _{0.5} O ₃ . Advanced Functional Materials, 2014, 24, 7478-7487.	7.8	38
76	In situ SEM study of lithium intercalation in individual V ₂ O ₅ nanowires. Nanoscale, 2015, 7, 3022-3027.	2.8	38
77	Universal emergence of spatially modulated structures induced by flexoantiferrodistortive coupling in multiferroics. Physical Review B, 2013, 88, .	1.1	37
78	Exploring Mesoscopic Physics of Vacancy-Ordered Systems through Atomic Scale Observations of Topological Defects. Physical Review Letters, 2012, 109, 065702.	2.9	36
79	Synthesis and Dielectric Properties of Li1-x+yTa1-x-3yTix+4yO3 M-Phase Solid Solutions. Journal of the American Ceramic Society, 2002, 85, 2487-2491.	1.9	33
80	Feature extraction via similarity search: application to atom finding and denoising in electron and scanning probe microscopy imaging. Advanced Structural and Chemical Imaging, 2018, 4, 3.	4.0	31
81	Layer-by-layer and pseudo-two-dimensional growth modes for heteroepitaxial BaTiO3 films by exploiting kinetic limitations. Applied Physics Letters, 2007, 91, 202901.	1.5	30
82	Polar distortion in ultrathinBaTiO3films studied byin situLEEDIâ^V. Physical Review B, 2008, 77, .	1.1	29
83	Direct-write liquid phase transformations with a scanning transmission electron microscope. Nanoscale, 2016, 8, 15581-15588.	2.8	29
84	Defect thermodynamics and kinetics in thin strained ferroelectric films: The interplay of possible mechanisms. Physical Review B, 2014, 89, .	1.1	28
85	Structural " δDoping―to Control Local Magnetization in Isovalent Oxide Heterostructures. Physical Review Letters, 2017, 119, 197204.	2.9	28
86	Multiferroic tunnel junctions and ferroelectric control of magnetic state at interface (invited). Journal of Applied Physics, 2015, 117, .	1.1	26
87	Spatially Resolved Mapping of Oxygen Reduction/Evolution Reaction on Solid-Oxide Fuel Cell Cathodes with Sub-10 nm Resolution. ACS Nano, 2013, 7, 3808-3814.	7.3	25
88	Dual Nanoparticle/Substrate Control of Catalytic Dehydrogenation. Advanced Materials, 2007, 19, 2129-2133.	11.1	24
89	Interface Engineered Roomâ€√emperature Ferromagnetic Insulating State in Ultrathin Manganite Films. Advanced Science, 2020, 7, 1901606.	5.6	24
90	Correlation between Geometrically Induced Oxygen Octahedral Tilts and Multiferroic Behaviors in BiFeO ₃ Films. Advanced Functional Materials, 2018, 28, 1800839.	7.8	21

#	Article	IF	CITATIONS
91	Simultaneously Boosting the Ionic Conductivity and Mechanical Strength of Polymer Gel Electrolyte Membranes by Confining Ionic Liquids into Hollow Silica Nanocavities. Batteries and Supercaps, 2019, 2, 985-991.	2.4	21
92	Interrelation between Structure – Magnetic Properties in La _{0.5} Sr _{0.5} CoO ₃ . Advanced Materials Interfaces, 2014, 1, 1400203.	1.9	20
93	Oxygen Vacancy Injection as a Pathway to Enhancing Electromechanical Response in Ferroelectrics. Advanced Materials, 2022, 34, e2106426.	11.1	20
94	Chapter 9 Materials Applications of Aberration-Corrected Scanning Transmission Electron Microscopy. Advances in Imaging and Electron Physics, 2008, , 327-384.	0.1	19
95	A combined HAADF STEM and density functional theory study of tantalum and niobium locations in the Moâ€"Vâ€"Teâ€"Ta(Nb)â€"O M1 phases. Catalysis Communications, 2012, 29, 68-72.	1.6	19
96	Nanoscale Probing of Voltage Activated Oxygen Reduction/Evolution Reactions in Nanopatterned (La _{<i>×</i>} Sr _{1â€<i>×</i>})CoO _{3â€} _{<i>Î</i>} Cathodes. Advanced Energy Materials, 2013, 3, 788-797.	10.2	19
97	Oxygen Disorder, a Way to Accommodate Large Epitaxial Strains in Oxides. Advanced Materials Interfaces, 2015, 2, 1500344.	1.9	19
98	Aberration-corrected STEM: current performance and future directions. Journal of Physics: Conference Series, 2006, 26, 7-12.	0.3	18
99	Roto-flexoelectric coupling impact on the phase diagrams and pyroelectricity of thin SrTiO3 films. Journal of Applied Physics, 2012, 112, .	1.1	18
100	Local probing of electrochemically induced negative differential resistance in TiO2memristive materials. Nanotechnology, 2013, 24, 085702.	1.3	18
101	Atom-by-atom fabrication by electron beam via induced phase transformations. MRS Bulletin, 2017, 42, 653-659.	1.7	18
102	Design of magnetoelectric coupling in a self-assembled epitaxial nanocomposite via chemical interaction. Journal of Materials Chemistry C, 2014, 2, 811-815.	2.7	17
103	Quantum confinement in transition metal oxide quantum wells. Applied Physics Letters, 2015, 106 , .	1.5	17
104	Toward Atomic-Scale Tomography: The ATOM Project. Microscopy and Microanalysis, 2011, 17, 708-709.	0.2	16
105	Engineering an Insulating Ferroelectric Superlattice with a Tunable Band Gap from Metallic Components. Physical Review Letters, 2017, 119, 177603.	2.9	16
106	Oxygen-vacancy-mediated dielectric property in perovskite Eu0.5Ba0.5TiO3-δ epitaxial thin films. Applied Physics Letters, 2018, 112, .	1.5	16
107	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">E</mml:mi><mml:msub><mml:mi mathvariant="normal">u</mml:mi><mml:mrow><mml:mn>0.5</mml:mn></mml:mrow></mml:msub><mml:mi mathvariant="normal">B</mml:mi><mml:msub><mml:mi< td=""><td>1.1</td><td>15</td></mml:mi<></mml:msub></mml:mrow>	1.1	15
108	mathvariant="normal">a <mml:mrow><mml:mn>0.5</mml:mn></mml:mrow> <mml:mi>T Quantum Confinement in Oxide Heterostructures: Room-Temperature Intersubband Absorption in SrTiO₃/LaAlO₃ Multiple Quantum Wells. ACS Nano, 2018, 12, 7682-7689.</mml:mi>	Ti7.3	i> <mml:msut 15</mml:msut

#	Article	lF	Citations
109	Room-temperature skyrmions in strain-engineered FeGe thin films. Physical Review B, 2020, 101, .	1.1	15
110	Identifying local structural states in atomic imaging by computer vision. Advanced Structural and Chemical Imaging, 2016, 2, 14.	4.0	14
111	Uncovering Structure-Properties Relations in Fuel Cells and Catalysts with Quantitative Aberration-Corrected STEM and EELS. Microscopy and Microanalysis, 2014, 20, 484-485.	0.2	13
112	Quantitative Analysis of HAADF–STEM Images of MoVTeTaO M1 Phase Catalyst for Propane Ammoxidation to Acrylonitrile. ChemCatChem, 2015, 7, 3731-3737.	1.8	13
113	Piezoelectric modulation of nonlinear optical response in BaTiO3 thin film. Applied Physics Letters, 2018, 113, 132902.	1.5	13
114	Water-mediated electrochemical nano-writing on thin ceria films. Nanotechnology, 2014, 25, 075701.	1.3	12
115	Synthesizing Highâ€Capacity Oxyfluoride Conversion Anodes by Direct Fluorination of Molybdenum Dioxide (MoO ₂). ChemSusChem, 2020, 13, 3825-3834.	3.6	12
116	La(Li1/3Ti2/3)O3: a new 1:2 ordered perovskite. Journal of Solid State Chemistry, 2003, 170, 198-201.	1.4	11
117	Electrochemical Strain Microscopy: Probing Electrochemical Transformations in Nanoscale Volumes. Microscopy Today, 2012, 20, 10-15.	0.2	11
118	Role of Solid-State Miscibility during Anion Exchange in Cesium Lead Halide Nanocrystals Probed by Single-Particle Fluorescence. Journal of Physical Chemistry Letters, 2020, 11, 952-959.	2.1	11
119	Detection of defects in atomic-resolution images of materials using cycle analysis. Advanced Structural and Chemical Imaging, 2020, 6, .	4.0	11
120	3D Atomic Resolution Imaging through Aberration-Corrected STEM. Microscopy and Microanalysis, 2004, 10, 1172-1173.	0.2	10
121	Atomic resolution study of the interfacial bonding at Si3N4/CeO2â^î^grain boundaries. Applied Physics Letters, 2008, 93, 053104.	1.5	9
122	Probing Biasâ€Dependent Electrochemical Gas–Solid Reactions in (La _{<i>x</i>} Sr _{1–<i>x</i>})CoO _{3–} _{<i>δ</i>} Cathode Materials. Advanced Functional Materials, 2013, 23, 5027-5036.	7.8	9
123	Evolution of fractal particles in systems with conserved order parameter. Physical Review E, 2000, 61, 1189-1194.	0.8	8
124	Analysis of phase distributions in the Li2O–Nb2O5–TiO2 system by piezoresponse imaging. Journal of Materials Research, 2001, 16, 329-332.	1.2	8
125	Sub-Ãngstrom Resolution through Aberration-Corrected STEM. Microscopy and Microanalysis, 2003, 9, 926-927.	0.2	8
126	1:2 Cation order in A(Li1/3(Nb,Ta)2/3)O3 microwave perovskites. Applied Physics Letters, 2004, 84, 1347-1349.	1.5	8

#	Article	IF	Citations
127	Antisite defects in layered multiferroic CuCr _{0.9} In _{0.1} P ₂ S ₆ . Nanoscale, 2015, 7, 18579-18583.	2.8	8
128	Depth resolved lattice-charge coupling in epitaxial BiFeO3 thin film. Scientific Reports, 2016, 6, 38724.	1.6	8
129	Evidence for Interfacial Octahedral Coupling as a Route to Enhance Magnetoresistance in Perovskite Oxide Superlattices. Advanced Materials Interfaces, 2020, 7, 1901576.	1.9	8
130	Quantum Many-Body Effects in Defective Transition-Metal-Oxide Superlattices. Journal of Chemical Theory and Computation, 2017, 13, 5604-5609.	2.3	7
131	Three-Dimensional Integration of Functional Oxides and Crystalline Silicon for Optical Neuromorphic Computing Using Nanometer-Scale Oxygen Scavenging Barriers. ACS Applied Nano Materials, 2021, 4, 2153-2159.	2.4	7
132	Crystal Symmetry Engineering in Epitaxial Perovskite Superlattices. Advanced Functional Materials, 2021, 31, 2106466.	7.8	7
133	Imaging of Light Atoms in the Presence of Heavy Atomic Columns. Microscopy and Microanalysis, 2010, 16, 92-93.	0.2	6
134	Atomic Structure of Surface Dielectric Dead Layer in BiFeO3 Thin Film. Microscopy and Microanalysis, 2013, 19, 1928-1929.	0.2	6
135	Towards spin-polarized two-dimensional electron gas at a surface of an antiferromagnetic insulating oxide. Physical Review B, 2016, 94, .	1.1	6
136	Materials Applications of Aberration-Corrected STEM. Microscopy and Microanalysis, 2004, 10, 12-13.	0.2	5
137	Nanoscale modulations in (KLa)(CaW)O6 and (NaLa)(CaW)O6. Journal of Solid State Chemistry, 2012, 191, 220-224.	1.4	5
138	Facile MoS2 Growth on Reduced Graphene-Oxide via Liquid Phase Method. Frontiers in Materials, 2018, 5, .	1.2	5
139	Theory-assisted determination of nano-rippling and impurities in atomic resolution images of angle-mismatched bilayer graphene. 2D Materials, 2018, 5, 041008.	2.0	5
140	Confined polaronic transport in (LaFeO3) <i>n</i> /(SrFeO3)1 superlattices. APL Materials, 2019, 7, .	2.2	5
141	Epitaxial growth and dielectric characterization of atomically smooth 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	5
142	Amorphization and Plasticity of Olivine During Lowâ€Temperature Micropillar Deformation Experiments. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019242.	1.4	5
143	Behavior of Au Species in Au/FeOx Catalysts as a Result of In-Situ Thermal Treatments, Characterized via Aberration-Corrected STEM Imaging. Microscopy and Microanalysis, 2009, 15, 1482-1483.	0.2	4
144	Ptychographic Imaging in an Aberration Corrected STEM. Microscopy and Microanalysis, 2015, 21, 1219-1220.	0.2	4

#	Article	IF	CITATIONS
145	Domains and Topological Defects in Layered Ferrielectric Materials: Implications for Nanoelectronics. ACS Applied Nano Materials, 2020, 3, 8161-8166.	2.4	4
146	Probing Nanostructures Site by Site with the Aberration-Corrected STEM. Microscopy and Microanalysis, 2003, 9, 2-3.	0.2	3
147	Single-Atom Sensitivity for Solving Catalysis Problems. Microscopy and Microanalysis, 2004, 10, 460-461.	0.2	3
148	Depth-related Contrast in Aberration-Corrected Confocal STEM. Microscopy and Microanalysis, 2006, 12, 1574-1575.	0.2	3
149	Functional Electron Microscopy for Electrochemistry Research: From the Atomic to the Micro Scale. Electrochemical Society Interface, 2014, 23, 61-66.	0.3	3
150	Studying Dynamics of Oxygen Vacancy Ordering in Epitaxial LaCoO ₃ / SrTiO ₃ Superlattice with Real-Time Observation. Microscopy and Microanalysis, 2014, 20, 422-423.	0.2	3
151	Deep Convolutional Neural Network Approach as a Universal Tool for Determination of Local 3D Structure from ABF STEM Images of Perovskitesy. Microscopy and Microanalysis, 2018, 24, 530-531.	0.2	3
152	Sub-10 nm Probing of Ferroelectricity in Heterogeneous Materials by Machine Learning Enabled Contact Kelvin Probe Force Microscopy. ACS Applied Electronic Materials, 2021, 3, 4409-4417.	2.0	3
153	Effects of precipitate size and spacing on deformation-induced fcc to bcc phase transformation. Materials Research Letters, 2022, 10, 585-592.	4.1	3
154	Studies of Single Dopant Atoms on Nanocrystalline \hat{I}^3 -Alumina Supports by Aberration-Corrected Z-contrast STEM and First Principles Calculations. Microscopy and Microanalysis, 2003, 9, 398-399.	0.2	2
155	Tomographic Imaging of Nanostructures with Next Generation HAADF-STEM. Microscopy and Microanalysis, 2004, 10, 1200-1201.	0.2	2
156	3D Scanning Transmission Electron Microscopy for Catalysts: Imaging and Data Analysis. Microscopy and Microanalysis, 2008, 14, 168-169.	0.2	2
157	Interface Structure-Property Relations Through Aberration-Corrected STEM. Microscopy and Microanalysis, 2010, 16, 1420-1421.	0.2	2
158	Patterning: Atomicâ€Level Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision (Small 44/2015). Small, 2015, 11, 5854-5854.	5.2	2
159	Using Multivariate Analysis of Scanning-Rochigram Data to Reveal Material Functionality. Microscopy and Microanalysis, 2016, 22, 292-293.	0.2	2
160	High-resolution structural characterization and magnetic properties of epitaxial Ce-doped yttrium iron garnet thin films. Materials Research Express, 2017, 4, 076101.	0.8	2
161	Atomic-Scale Identification of Planar Defects in Cesium Lead Bromide Perovskite Nanocrystals. Microscopy and Microanalysis, 2018, 24, 100-101.	0.2	2
162	Metalâ€Nitrogenâ€Carbon Clusterâ€Decorated Titanium Carbide is a Durable and Inexpensive Oxygen Reduction Reaction Electrocatalyst. ChemSusChem, 2021, 14, 4680-4689.	3.6	2

#	Article	IF	CITATIONS
163	3D Imaging with Single Atom Sensitivity using Confocal STEM. Microscopy and Microanalysis, 2006, 12, 1562-1563.	0.2	1
164	Structure-Properties Relationships in SnO2/Al2O3 and Pt/SnO2/Al2O3 Catalysts. Microscopy and Microanalysis, 2007, 13, .	0.2	1
165	Spatial Resolution, Information Limit, and Contrast Transfer in Piezoresponce Force Microscopy. Microscopy and Microanalysis, 2007, 13, .	0.2	1
166	Direct Imaging of Point Defect Configurations for Au inside Si Nanowires. Microscopy and Microanalysis, 2008, 14, 204-205.	0.2	1
167	Using Neural Network Algorithms for Compositional Mapping in STEM EELS. Microscopy and Microanalysis, 2009, 15, 450-451.	0.2	1
168	Towards the Thinking Microscope. Microscopy and Microanalysis, 2010, 16, 160-161.	0.2	1
169	Untangling Coupled Order Parameters at Complex Oxide Interfaces with Aberration-Corrected STEM and EELS. Microscopy and Microanalysis, 2012, 18, 318-319.	0.2	1
170	Direct Mapping of Octahedral Tilts in Perovskite Oxide Materials Using Bright Field Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2012, 18, 420-421.	0.2	1
171	Atomic-Level Fabrication of Crystalline Oxides in STEM. Microscopy and Microanalysis, 2015, 21, 939-940.	0.2	1
172	Local Crystallography: Phases, Symmetries, and Defects from Bottom Up. Microscopy and Microanalysis, 2015, 21, 2203-2204.	0.2	1
173	Investigation of the tunnel magnetoresistance in junctions with a strontium stannate barrier. Journal of Applied Physics, 2016, 120, 233903.	1.1	1
174	Fast Aberration Measurement in Multi-Dimensional STEM. Microscopy and Microanalysis, 2016, 22, 252-253.	0.2	1
175	Identifying Novel Polar Distortion Modes in Engineered Magnetic Oxide Superlattices. Microscopy and Microanalysis, 2017, 23, 1590-1591.	0.2	1
176	Information Localization in the Electron Microscope. Microscopy and Microanalysis, 2003, 9, 960-961.	0.2	0
177	Imaging of Materials through Aberration Corrected STEM. Microscopy and Microanalysis, 2005, 11, .	0.2	0
178	Resolution Limit Measured by Fourier Transform: 0.61 Angstrom Information Transfer through HAADF-STEM. Microscopy and Microanalysis, 2005, 11 , .	0.2	0
179	Nanostructure Functionality through Aberration-Corrected STEM. Microscopy and Microanalysis, 2005, 11 , .	0.2	0
180	Aberration-Corrected STEM for Understanding of the Catalytic Mechanisms and Development of New Catalysts. Microscopy and Microanalysis, 2005, 11 , .	0.2	0

#	Article	IF	CITATIONS
181	Three Dimensional Characterization of Interfaces using Aberration-corrected STEM. Microscopy and Microanalysis, 2005, 11 , .	0.2	O
182	Aberration-Corrected STEM - More than just Higher Resolution. Microscopy and Microanalysis, 2006, 12, 132-133.	0.2	0
183	Vertical Resolution in the Confocal STEM – Present and Future. Microscopy and Microanalysis, 2006, 12, 184-185.	0.2	0
184	Studies of Bimetallic (Pt, Ru) Catalysts with Aberration-Corrected STEM and Theory. Microscopy and Microanalysis, 2006, 12, 774-775.	0.2	0
185	Improving 3D Reconstruction from STEM Data. Microscopy and Microanalysis, 2007, 13, .	0.2	0
186	New Views of Materials through Aberration-Corrected STEM. Microscopy and Microanalysis, 2007, 13, .	0.2	0
187	Investigation of the Atomic Structures of Si3N4/CeO2- \hat{l} Interfaces using Atomic Resolution Z-contrast Imaging and EELS combined with First-Principles Methods. Microscopy and Microanalysis, 2008, 14, 1364-1365.	0.2	0
188	Interfacial Structure in Multiferroic BiFeO3 Thin Films. Microscopy and Microanalysis, 2009, 15, 1028-1029.	0.2	0
189	Study of the Atomic Structures of Si3N4/CeO2-x and Si3N4/SiO2 Interfaces Using STEM and First-Principles Methods. Microscopy and Microanalysis, 2009, 15, 1014-1015.	0.2	0
190	Revealing Local Dynamics of Domain Growth in a Ferroelectric Material by In-Situ STEM-SPM. Microscopy and Microanalysis, 2010, 16, 1424-1425.	0.2	0
191	Uncovering Interface Structure by Column Shape Analysis in ADF STEM Images. Microscopy and Microanalysis, 2010, 16, 108-109.	0.2	0
192	Interface Structures and Associated Magnetic Properties of Perovskite Oxide Thin Films Controlled by Substrate Symmetry. Microscopy and Microanalysis, 2011, 17, 1406-1407.	0.2	0
193	MEMS-Based Electrical Testing of IBID Carbon and Tungsten Wires. Microscopy and Microanalysis, 2011, 17, 436-437.	0.2	0
194	Atomic Level View at the Ferroelectric-Antiferroelectric Transition and Phase Coexistence at Morphotropic Phase Boundary by Quantitative Aberration-Corrected STEM. Microscopy and Microanalysis, 2011, 17, 1358-1359.	0.2	0
195	Interplay Between Polarization and Oxygen Stoichiometry at Ferroelectric Domain Boundaries in BiFeO3. Microscopy and Microanalysis, 2011, 17, 1412-1413.	0.2	0
196	In Situ and Post Mortem Observation of Bias Cycling Effects in Thin Film La0.8Sr0.2CoO3 Solid Oxide Fuel Cell Cathodes. Microscopy and Microanalysis, 2011, 17, 1596-1597.	0.2	0
197	Unconventional Antiferroelectric Phase Stabilization in Thin Film BiFeO3 by Interface-Induced Rotoelectric Coupling Effect. Microscopy and Microanalysis, 2012, 18, 412-413.	0.2	0
198	Interplay of Octahedral Rotations, Magnetic and Electronic Properties in Epitaxial LaCoO3 Thin Films. Microscopy and Microanalysis, 2013, 19, 1924-1925.	0.2	0

#	Article	IF	Citations
199	Novel M1/M2 Heterostructure in Mo-V-M-Ta (M = Te or Sb) Complex Oxide Catalyst Revealed by Aberration Corrected HAADF STEM. Microscopy and Microanalysis, 2014, 20, 110-111.	0.2	O
200	Toward 3D Mapping of Octahedral Rotations at Perovskite Thin Film Heterointerfaces Unit Cell by Unit Cell. Microscopy and Microanalysis, 2014, 20, 1038-1039.	0.2	0
201	Moving atomic-resolution imaging into the age of deep data. Microscopy and Microanalysis, 2015, 21, 1607-1608.	0.2	0
202	Automated and Shaped-Controlled Liquid STEM Nanolithography. Microscopy and Microanalysis, 2015, 21, 1127-1128.	0.2	0
203	STEM in 4 Dimensions: Using Multivariate Analysis of Ptychographic Data to Reveal Material Functionality. Microscopy and Microanalysis, 2015, 21, 1863-1864.	0.2	0
204	Phase Transformations and Surface/Interface Properties in Functional Perovskites with Aberration-Corrected STEM/EELS. Microscopy and Microanalysis, 2015, 21, 2429-2430.	0.2	0
205	Local Crystallography for Quantitative Analysis of Atomically Resolved Images. Microscopy and Microanalysis, 2016, 22, 948-949.	0.2	0
206	Distortion Correction in Scanning Transmission Electron Microcopy with Controllable Scanning Pathways. Microscopy and Microanalysis, 2016, 22, 900-901.	0.2	0
207	Tracking BO 6 Coupling in Perovskite Superlattices to Engineer Magnetic Interface Behavior. Microscopy and Microanalysis, 2016, 22, 904-905.	0.2	0
208	Big, deep, and smart data from atomically resolved images: exploring the origins of materials functionality. Microscopy and Microanalysis, 2016, 22, 1416-1417.	0.2	0
209	Growth and In Situ Characterization of Oxide Epitaxial Heterostructures with Atomic Plane Precision. Microscopy and Microanalysis, 2016, 22, 1504-1505.	0.2	0
210	Polar phase transitions in heteroepitaxial stabilized La _{0.5} Y _{0.5} AlO ₃ thin films. Journal of Physics Condensed Matter, 2017, 29, 405401.	0.7	0
211	Acquisition and Fast Analysis of Multi-Dimensional STEM Data. Microscopy and Microanalysis, 2017, 23, 168-169.	0.2	0
212	Investigating Ionic Transport Anisotropy in Oxygen Deficient Lanthanum Cobaltites via STEM and First Principles Theory. Microscopy and Microanalysis, 2017, 23, 1410-1411.	0.2	0
213	Towards Atomic-Scale Fabrication in Silicon. Microscopy and Microanalysis, 2018, 24, 158-159.	0.2	0
214	Towards the Mechanism of Oxygen Vacancy Formation & Ordering via Tracking of Beam-Induced Dynamics and Density Functional Theory. Microscopy and Microanalysis, 2018, 24, 92-93.	0.2	0
215	Atomic Manipulation on a Scanning Transmission Electron Microscope Platform using Real-Time Image Processing and Feedback. Microscopy and Microanalysis, 2018, 24, 534-535.	0.2	0
216	Rapid Atomic-Resolution Image Analysis: Towards Near-Instant Feedback. Microscopy and Microanalysis, 2018, 24, 538-539.	0.2	0

#	Article	IF	CITATIONS
217	A STEM-based Path Towards Atomic-scale Silicon-based Devices. Microscopy and Microanalysis, 2019, 25, 2290-2291.	0.2	O
218	Tracing Oxygen Transport Pathways with In-Situ STEM and Theory. Microscopy and Microanalysis, 2019, 25, 1428-1429.	0.2	0
219	Quantitative Aberration-Corrected STEM for Studies of Oxide Superlattices and Topological Defects in Layered Ferroelectrics. Microscopy and Microanalysis, 2020, 26, 1194-1195.	0.2	0
220	Prospects for single atom location and identification with aberration-corrected STEM., 2018, , 523-532.		0