## José LuÃ-s Zêzere

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4288692/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Mass-Movement Processes: Shallow Landslides. , 2022, , 106-113.                                                                                                                                  |     | 1         |
| 2  | Biophysical controls over fire regime properties in Central Portugal. Science of the Total Environment, 2022, 810, 152314.                                                                       | 3.9 | 12        |
| 3  | Developing a large-scale dataset of flood fatalities for territories in the Euro-Mediterranean region,<br>FFEM-DB. Scientific Data, 2022, 9, 166.                                                | 2.4 | 18        |
| 4  | Exposure and physical vulnerability indicators to assess seismic risk in urban areas: a step towards a multi-hazard risk analysis. Geomatics, Natural Hazards and Risk, 2022, 13, 1154-1177.     | 2.0 | 3         |
| 5  | Reassessing wildfire susceptibility and hazard for mainland Portugal. Science of the Total Environment, 2021, 762, 143121.                                                                       | 3.9 | 36        |
| 6  | Damaging flood risk in the Portuguese municipalities. , 2021, , 59-79.                                                                                                                           |     | 0         |
| 7  | Predicting burnt areas during the summer season in Portugal by combining wildfire susceptibility and spring meteorological conditions. Geomatics, Natural Hazards and Risk, 2021, 12, 1039-1057. | 2.0 | 7         |
| 8  | A combined structural and seasonal approach to assess wildfire susceptibility and hazard in summertime. Natural Hazards, 2021, 106, 2545-2573.                                                   | 1.6 | 10        |
| 9  | Avaliação de Risco de Incêndio Rural à escala local na região Centro de Portugal. , 2021, , 78-89.                                                                                               |     | 0         |
| 10 | Quantitative micro-scale flood risk assessment in a section of the TrotuÈ™ River, Romania. Land Use<br>Policy, 2020, 95, 103881.                                                                 | 2.5 | 13        |
| 11 | Uncovering the perception regarding wildfires of residents with different characteristics.<br>International Journal of Disaster Risk Reduction, 2020, 43, 101370.                                | 1.8 | 17        |
| 12 | Defining evacuation travel times and safety areas in a debris flow hazard scenario. Science of the<br>Total Environment, 2020, 712, 136452.                                                      | 3.9 | 12        |
| 13 | Journalistic approach of hydro-geomorphological events in the beginning of the industrial press.<br>International Journal of Disaster Risk Reduction, 2020, 50, 101919.                          | 1.8 | 4         |
| 14 | Assessing Risk and Prioritizing Safety Interventions in Human Settlements Affected by Large Wildfires.<br>Forests, 2020, 11, 859.                                                                | 0.9 | 23        |
| 15 | Vegetation evolution by ecological succession as a potential bioindicator of landslides relative age in<br>Southwestern Mediterranean region. Natural Hazards, 2020, 103, 599-622.               | 1.6 | 6         |
| 16 | A comprehensive approach to understanding flood risk drivers at the municipal level. Journal of<br>Environmental Management, 2020, 260, 110127.                                                  | 3.8 | 36        |
| 17 | Assessing the biophysical and social drivers of burned area distribution at the local scale. Journal of Environmental Management, 2020, 264, 110449.                                             | 3.8 | 22        |
| 18 | The Arrábida Chain: The Alpine Orogeny in the Vicinity of the Atlantic Ocean. World<br>Geomorphological Landscapes, 2020, , 273-278.                                                             | 0.1 | 2         |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A landslide risk index for municipal land use planning in Portugal. Science of the Total Environment, 2020, 735, 139463.                                                                                                          | 3.9 | 44        |
| 20 | Enhancing Estuarine Flood Risk Management: Comparative Analysis of Three Estuarine Systems. Journal of Coastal Research, 2020, 95, 935.                                                                                           | 0.1 | 1         |
| 21 | Geomorphological Hazards. World Geomorphological Landscapes, 2020, , 47-62.                                                                                                                                                       | 0.1 | 3         |
| 22 | The North of Lisbon Region—A Dynamic Landscape. World Geomorphological Landscapes, 2020, ,<br>265-272.                                                                                                                            | 0.1 | 0         |
| 23 | A comparative analysis of statistical landslide susceptibility mapping in the southeast region of Minas<br>Gerais state, Brazil. Bulletin of Engineering Geology and the Environment, 2019, 78, 3205-3221.                        | 1.6 | 32        |
| 24 | Combining data-driven models to assess susceptibility of shallow slides failure and run-out.<br>Landslides, 2019, 16, 2259-2276.                                                                                                  | 2.7 | 10        |
| 25 | Landslide Susceptibility Assessment at the Basin Scale for Rainfall- and Earthquake-Triggered Shallow<br>Slides. Geosciences (Switzerland), 2019, 9, 268.                                                                         | 1.0 | 18        |
| 26 | Flood Fatalities in Europe, 1980–2018: Variability, Features, and Lessons to Learn. Water (Switzerland),<br>2019, 11, 1682.                                                                                                       | 1.2 | 61        |
| 27 | Empirical rainfall thresholds for the triggering of landslides in Asturias (NW Spain). Landslides, 2019, 16, 1285-1300.                                                                                                           | 2.7 | 20        |
| 28 | Territorial Resilience and Flood Vulnerability. Case Studies at Urban Scale in Torino (Italy) and<br>Porto/Vila Nova de Gaia (Portugal). Resilient Cities, 2019, , 147-174.                                                       | 0.6 | 1         |
| 29 | A new approach to assess ancient marine slope instability using a bivariate statistical method. Marine<br>Geology, 2018, 401, 129-144.                                                                                            | 0.9 | 4         |
| 30 | A comparison between bivariate and multivariate methods to assess susceptibility to<br>liquefaction-related coseismic surface effects in the Po Plain (Northern Italy). Geomatics, Natural<br>Hazards and Risk, 2018, 9, 108-126. | 2.0 | 6         |
| 31 | A centennial catalogue of hydro-geomorphological events and their atmospheric forcing. Advances in<br>Water Resources, 2018, 122, 98-112.                                                                                         | 1.7 | 19        |
| 32 | Identification of elements exposed to flood hazard in a section of Trotus River, Romania. Geomatics,<br>Natural Hazards and Risk, 2018, 9, 950-969.                                                                               | 2.0 | 13        |
| 33 | Combining Social Vulnerability and Physical Vulnerability to Analyse Landslide Risk at the Municipal<br>Scale. Geosciences (Switzerland), 2018, 8, 294.                                                                           | 1.0 | 42        |
| 34 | Generation of Persistent Scatterers in Non-Urban Areas: The Role of Microwave Scattering<br>Parameters. Geosciences (Switzerland), 2018, 8, 269.                                                                                  | 1.0 | 4         |
| 35 | Debris flow run-out simulation and analysis using a dynamic model. Natural Hazards and Earth System Sciences, 2018, 18, 555-570.                                                                                                  | 1.5 | 29        |
| 36 | Regional rainfall thresholds for landslide occurrence using a centenary database. Natural Hazards and Earth System Sciences, 2018, 18, 1037-1054.                                                                                 | 1.5 | 30        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Rainfall thresholds for landsliding in Lisbon Area (Portugal). , 2018, , 333-338.                                                                                                                                              |     | 9         |
| 38 | Mapping landslide susceptibility using data-driven methods. Science of the Total Environment, 2017, 589, 250-267.                                                                                                              | 3.9 | 210       |
| 39 | Modeling debris flow initiation and run-out in recently burned areas using data-driven methods.<br>Natural Hazards, 2017, 88, 1373-1407.                                                                                       | 1.6 | 14        |
| 40 | Comparing flood mortality in Portugal and Greece (Western and Eastern Mediterranean).<br>International Journal of Disaster Risk Reduction, 2017, 22, 147-157.                                                                  | 1.8 | 66        |
| 41 | Assessing the social context of wildfire-affected areas. The case of mainland Portugal. Applied<br>Geography, 2017, 88, 104-117.                                                                                               | 1.7 | 55        |
| 42 | The contribution of historical information to flood risk management in the Tagus estuary.<br>International Journal of Disaster Risk Reduction, 2017, 25, 22-35.                                                                | 1.8 | 8         |
| 43 | Landslide quantitative risk analysis of buildings at the municipal scale based on a rainfall triggering scenario. Geomatics, Natural Hazards and Risk, 2017, 8, 624-648.                                                       | 2.0 | 24        |
| 44 | Floristic and vegetation successional processes within landslides in a Mediterranean environment.<br>Science of the Total Environment, 2017, 574, 969-981.                                                                     | 3.9 | 38        |
| 45 | Implementation of Tsunami Evacuation Maps at Setubal Municipality, Portugal. Geosciences<br>(Switzerland), 2017, 7, 116.                                                                                                       | 1.0 | 6         |
| 46 | Combination of statistical and physically based methods to assess shallow slide susceptibility at the basin scale. Natural Hazards and Earth System Sciences, 2017, 17, 1091-1109.                                             | 1.5 | 18        |
| 47 | Landslide Societal Risk in Portugal in the Period 1865â $\in$ 2015. , 2017, , 491-499.                                                                                                                                         |     | 5         |
| 48 | AVALIAÇÃO DA SUSCETIBILIDADE À RUTURA E PROPAGAÇÃO DE FLUXOS DE DETRITOS NA BACIA<br>HIDROGRÃFICA DO RIO ZÊZERE (SERRA DA ESTRELA, PORTUGAL). Revista Brasileira De Geomorfologia,<br>2017, 18, .                              | 0.1 | 5         |
| 49 | Assessing population exposure for landslide risk analysis using dasymetric cartography. Natural<br>Hazards and Earth System Sciences, 2016, 16, 2769-2782.                                                                     | 1.5 | 21        |
| 50 | Assessment of physical vulnerability of buildings and analysis of landslide risk at the municipal scale:<br>application to the Loures municipality, Portugal. Natural Hazards and Earth System Sciences, 2016, 16,<br>311-331. | 1.5 | 34        |
| 51 | Spatial impact and triggering conditions of the exceptional hydro-geomorphological event of<br>DecemberÅ1909 in Iberia. Natural Hazards and Earth System Sciences, 2016, 16, 371-390.                                          | 1.5 | 20        |
| 52 | Mortality Patterns of Hydroâ€Geomorphologic Disasters. Risk Analysis, 2016, 36, 1188-1210.                                                                                                                                     | 1.5 | 49        |
| 53 | The deadliest storm of the 20th century striking Portugal: Flood impacts and atmospheric circulation. Journal of Hydrology, 2016, 541, 597-610.                                                                                | 2.3 | 56        |
| 54 | Landslides and other geomorphologic and hydrologic effects induced by earthquakes in Portugal.<br>Natural Hazards, 2016, 81, 71-98.                                                                                            | 1.6 | 16        |

| #  | Article                                                                                                                                                                                                                 | IF                | CITATIONS     |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
| 55 | The role of the lithological setting on the landslide pattern and distribution. Engineering Geology, 2015, 189, 17-31.                                                                                                  | 2.9               | 50            |
| 56 | The contribution of PSInSAR interferometry to landslide hazard in weak rock-dominated areas.<br>Landslides, 2015, 12, 703-719.                                                                                          | 2.7               | 73            |
| 57 | Application of Social Vulnerability Index (SoVI) and delineation of natural risk zones in Greater<br>Lisbon, Portugal. Journal of Risk Research, 2015, 18, 651-674.                                                     | 1.4               | 122           |
| 58 | Chapter 13 Landslides on São Miguel Island (Azores): susceptibility analysis and validation of rupture zones using a bivariate GIS-based statistical approach. Geological Society Memoir, 2015, 44, 167-184.            | 0.9               | 6             |
| 59 | Rainfall thresholds for landslide activity in Portugal: a state of the art. Environmental Earth<br>Sciences, 2015, 73, 2917-2936.                                                                                       | 1.3               | 91            |
| 60 | Structure and Characteristics of Landslide Input Data and Consequences on Landslide Susceptibility Assessment and Prediction Capability. , 2015, , 189-192.                                                             |                   | 9             |
| 61 | CONTRIBUIÇÃO PARA O CONHECIMENTO DA GEOMORFOLOGIA DA CADEIA DA ARRÃBIDA (PORTUGAL):<br>CARTOGRAFIA GEOMORFOLÓGICA E GEOMORFOMETRIA. Revista Brasileira De Geomorfologia, 2015, 16, .                                    | 0.1               | 3             |
| 62 | The record precipitation and flood event in Iberia in December 1876: description and synoptic analysis.<br>Frontiers in Earth Science, 2014, 2, .                                                                       | 0.8               | 33            |
| 63 | Geomorphology of the Arrábida Chain (Portugal). Journal of Maps, 2014, 10, 103-108.                                                                                                                                     | 1.0               | 6             |
| 64 | Risk analysis for local management from hydro-geomorphologic disaster databases. Environmental<br>Science and Policy, 2014, 40, 85-100.                                                                                 | 2.4               | 21            |
| 65 | Susceptibility assessment to different types of landslides in the coastal cliffs of LourinhÃ ${ m \pounds}$ (Central) Tj ETQq1 1 C                                                                                      | ).784314 t<br>0.6 | rgBT /Overloc |
| 66 | DISASTER: a GIS database on hydro-geomorphologic disasters in Portugal. Natural Hazards, 2014, 72, 503-532.                                                                                                             | 1.6               | 117           |
| 67 | Landslide incidence in the North of Portugal: Analysis of a historical landslide database based on press releases and technical reports. Geomorphology, 2014, 214, 514-525.                                             | 1.1               | 45            |
| 68 | Identification of hazardous zones combining cliff retreat rates with landslide susceptibility assessment. Journal of Coastal Research, 2013, 165, 1681-1686.                                                            | 0.1               | 9             |
| 69 | Desastres naturais de origem hidro-geomorfológica no baixo Mondego no perÃodo 1961-2010.<br>Territorium: Revista Portuguesa De Riscos, Prevenção E Segurança, 2013, , 65-76.                                            | 0.1               | 2             |
| 70 | Landslide Susceptibility Assessment and Validation in the Framework of Municipal Planning in<br>Portugal: The Case of Loures Municipality. Environmental Management, 2012, 50, 721-735.                                 | 1.2               | 76            |
| 71 | Technical Note: Assessing predictive capacity and conditional independence of landslide predisposing factors for shallow landslide susceptibility models. Natural Hazards and Earth System Sciences, 2012, 12, 979-988. | 1.5               | 67            |
| 72 | Modelos de susceptibilidade a deslizamentos superficiais translacionais na Região a Norte de Lisboa.<br>Finisterra, 2012, 46, .                                                                                         | 0.3               | 6             |

| #  | Article                                                                                                                                                                                        | IF              | CITATIONS          |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|
| 73 | Instabilité des versants dans la région au nord de Lisbonne. Essai de cartographie géomorphologique.<br>Finisterra, 2012, 22, .                                                                | 0.3             | 2                  |
| 74 | A Claciação plistocénica na Serra do Gerês. Finisterra, 2012, 35, .                                                                                                                            | 0.3             | 1                  |
| 75 | Problemas da evolução geomorfologica do Maciço Calcário Estremenho. Finisterra, 2012, 23, .                                                                                                    | 0.3             | 1                  |
| 76 | Segunda Reunião do Quaternário Ibérico. Finisterra, 2012, 25, .                                                                                                                                | 0.3             | 0                  |
| 77 | Catástrofes naturais em debate. Finisterra, 2012, 28, .                                                                                                                                        | 0.3             | 0                  |
| 78 | Segunda Conferência Internacional de Geomorfologia. Finisterra, 2012, 25, .                                                                                                                    | 0.3             | 0                  |
| 79 | 8th International Symposium on Landslides. Finisterra, 2012, 35, .                                                                                                                             | 0.3             | Ο                  |
| 80 | Integração de dados espaciais em SIG para avaliação da susceptibilidade de ocorrência de<br>deslizamentos. Finisterra, 2012, 38, .                                                             | 0.3             | 0                  |
| 81 | Coastline at Risk: Methods for Multi-Hazard Assessment. Journal of Coastal Research, 2011, 61, 335-339.                                                                                        | 0.1             | 11                 |
| 82 | Impacts of the North Atlantic Oscillation on Landslides. Advances in Global Change Research, 2011, ,<br>199-212.                                                                               | 1.6             | 12                 |
| 83 | Cheias e movimentos de massa com carácter danoso em Portugal Continental. , 2011, , 799-807.                                                                                                   |                 | 1                  |
| 84 | Modelação em sistemas de informação geográfica da avaliação da susceptibilidade a movimentos de<br>vertente na área amostra de Lousa-Loures (RegiÁ£o a norte de Lisboa). , 2011, , 539-546.    |                 | 0                  |
| 85 | The exceptional rainfall event in Lisbon on 18 February 2008. Weather, 2010, 65, 31-35.                                                                                                        | 0.6             | 28                 |
| 86 | Assessment and validation of wildfire susceptibility and hazard in Portugal. Natural Hazards and<br>Earth System Sciences, 2010, 10, 485-497.                                                  | 1.5             | 95                 |
| 87 | Rainfall patterns and critical values associated with landslides in Povoação County (São Miguel) Tj ETQq1 1<br>478-494.                                                                        | 0.784314<br>1.1 | rgBT /Overlo<br>73 |
| 88 | Probabilistic landslide risk analysis considering direct costs in the area north of Lisbon (Portugal).<br>Geomorphology, 2008, 94, 467-495.                                                    | 1.1             | 136                |
| 89 | Rainfall-triggered landslides in the Lisbon region over 2006 and relationships with the North Atlantic<br>Oscillation. Natural Hazards and Earth System Sciences, 2008, 8, 483-499.            | 1.5             | 39                 |
| 90 | Landslide risk analysis in the area North of Lisbon (Portugal): evaluation of direct and indirect costs resulting from a motorway disruption by slope movements. Landslides, 2007, 4, 123-136. | 2.7             | 56                 |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | The Influence of the North Atlantic Oscillation on Rainfall Triggering of Landslides near Lisbon.<br>Natural Hazards, 2005, 36, 331-354.                                                                             | 1.6 | 73        |
| 92 | Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of<br>relationships with the North Atlantic Oscillation. Natural Hazards and Earth System Sciences, 2005, 5,<br>331-344. | 1.5 | 190       |
| 93 | Integration of spatial and temporal data for the definition of different landslide hazard scenarios in the area north of Lisbon (Portugal). Natural Hazards and Earth System Sciences, 2004, 4, 133-146.             | 1.5 | 99        |
| 94 | Landslide susceptibility assessment considering landslide typology. A case study in the area north of<br>Lisbon (Portugal). Natural Hazards and Earth System Sciences, 2002, 2, 73-82.                               | 1.5 | 109       |
| 95 | The role of conditioning and triggering factors in the occurrence of landslides: a case study in the area north of Lisbon (Portugal). Geomorphology, 1999, 30, 133-146.                                              | 1.1 | 73        |
| 96 | Landslides in the North of Lisbon Region (Portugal): Conditioning and triggering factors. Physics and<br>Chemistry of the Earth, 1999, 24, 925-934.                                                                  | 0.6 | 46        |
| 97 | Portugal and the Portuguese Atlantic Islands. Developments in Earth Surface Processes, 1997, 5, 391-407.                                                                                                             | 2.8 | 13        |
| 98 | Dealing with Multisource Information for Estuarine Flood Risk Appraisal in Two Western European<br>Coastal Areas. International Journal of Disaster Risk Science, 0, , 1.                                            | 1.3 | 2         |