Chao Shan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4288547/publications.pdf

Version: 2024-02-01

101496 74108 6,554 80 36 75 h-index citations g-index papers 89 89 89 11083

docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature, 2020, 584, 120-124.	13.7	1,237
2	Pathogenesis of SARS-CoV-2 in Transgenic Mice Expressing Human Angiotensin-Converting Enzyme 2. Cell, 2020, 182, 50-58.e8.	13.5	502
3	AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells. Cell Research, 2021, 31, 126-140.	5.7	356
4	Evolutionary enhancement of Zika virus infectivity in Aedes aegypti mosquitoes. Nature, 2017, 545, 482-486.	13.7	318
5	An Infectious cDNA Clone of Zika Virus to Study Viral Virulence, Mosquito Transmission, and Antiviral Inhibitors. Cell Host and Microbe, 2016, 19, 891-900.	5.1	252
6	A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models. Nature Medicine, 2017, 23, 763-767.	15.2	242
7	An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction. Nature Communications, 2018, 9, 414.	5.8	231
8	Vaccine Mediated Protection Against Zika Virus-Induced Congenital Disease. Cell, 2017, 170, 273-283.e12.	13.5	224
9	An adenovirus-vectored COVID-19 vaccine confers protection from SARS-COV-2 challenge in rhesus macaques. Nature Communications, 2020, 11, 4207.	5.8	194
10	Infection with novel coronavirus (SARS-CoV-2) causes pneumonia in Rhesus macaques. Cell Research, 2020, 30, 670-677.	5.7	194
11	Zika virus has oncolytic activity against glioblastoma stem cells. Journal of Experimental Medicine, 2017, 214, 2843-2857.	4.2	179
12	Molecular signatures associated with ZIKV exposure in human cortical neural progenitors. Nucleic Acids Research, 2016, 44, 8610-8620.	6.5	155
13	A single-dose live-attenuated vaccine prevents Zika virus pregnancy transmission and testis damage. Nature Communications, 2017, 8, 676.	5.8	125
14	Functional Analysis of Glycosylation of Zika Virus Envelope Protein. Cell Reports, 2017, 21, 1180-1190.	2.9	118
15	Zika in the Americas, year 2: What have we learned? What gaps remain? A report from the Global Virus Network. Antiviral Research, 2017, 144, 223-246.	1.9	104
16	Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission. PLoS Pathogens, 2017, 13, e1006535.	2.1	101
17	Human IFIT3 Modulates IFIT1 RNA Binding Specificity and Protein Stability. Immunity, 2018, 48, 487-499.e5.	6.6	94
18	Envelope protein ubiquitination drives entry and pathogenesis of Zika virus. Nature, 2020, 585, 414-419.	13.7	82

#	Article	IF	Citations
19	Zika Virus Vaccine: Progress and Challenges. Cell Host and Microbe, 2018, 24, 12-17.	5.1	81
20	Discovery of Dengue Virus NS4B Inhibitors. Journal of Virology, 2015, 89, 8233-8244.	1.5	77
21	Zika Virus Replicons for Drug Discovery. EBioMedicine, 2016, 12, 156-160.	2.7	77
22	Zika Virus: Diagnosis, Therapeutics, and Vaccine. ACS Infectious Diseases, 2016, 2, 170-172.	1.8	76
23	Understanding Zika Virus Stability and Developing a Chimeric Vaccine through Functional Analysis. MBio, 2017, 8, .	1.8	76
24	Treatment of Human Glioblastoma with a Live Attenuated Zika Virus Vaccine Candidate. MBio, 2018, 9, .	1.8	74
25	Crystal Structure of Enterovirus 71 RNA-Dependent RNA Polymerase Complexed with Its Protein Primer VPg: Implication for a <i>trans</i> Mechanism of VPg Uridylylation. Journal of Virology, 2013, 87, 5755-5768.	1.5	66
26	A Zika virus vaccine expressing premembrane-envelope-NS1 polyprotein. Nature Communications, 2018, 9, 3067.	5.8	65
27	A SARS-CoV-2 neutralizing antibody with extensive Spike binding coverage and modified for optimal therapeutic outcomes. Nature Communications, 2021, 12, 2623.	5.8	64
28	Characterization of neutralizing antibody with prophylactic and therapeutic efficacy against SARS-CoV-2 in rhesus monkeys. Nature Communications, 2020, 11, 5752.	5.8	59
29	A Rapid Zika Diagnostic Assay to Measure Neutralizing Antibodies in Patients. EBioMedicine, 2017, 17, 157-162.	2.7	58
30	A Zika virus envelope mutation preceding the 2015 epidemic enhances virulence and fitness for transmission. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20190-20197.	3.3	53
31	A Single-Dose Live-Attenuated Zika Virus Vaccine with Controlled Infection Rounds that Protects against Vertical Transmission. Cell Host and Microbe, 2018, 24, 487-499.e5.	5.1	46
32	Zika virus oncolytic activity requires CD8+ T cells and is boosted by immune checkpoint blockade. JCI Insight, 2021, 6, .	2.3	46
33	Enterovirus 71 VPg Uridylation Uses a Two-Molecular Mechanism of 3D Polymerase. Journal of Virology, 2012, 86, 13662-13671.	1.5	43
34	Did Zika Virus Mutate to Cause Severe Outbreaks?. Trends in Microbiology, 2018, 26, 877-885.	3 . 5	43
35	Recovery of a chemically synthesized Japanese encephalitis virus reveals two critical adaptive mutations in NS2B and NS4A. Journal of General Virology, 2014, 95, 806-815.	1.3	40
36	A cDNA Clone-Launched Platform for High-Yield Production of Inactivated Zika Vaccine. EBioMedicine, 2017, 17, 145-156.	2.7	39

#	Article	IF	CITATIONS
37	The Interface between Methyltransferase and Polymerase of NS5 Is Essential for Flavivirus Replication. PLoS Neglected Tropical Diseases, 2014, 8, e2891.	1.3	38
38	Fragile X mental retardation protein is a Zika virus restriction factor that is antagonized by subgenomic flaviviral RNA. ELife, 2018, 7, .	2.8	37
39	A single-dose plasmid-launched live-attenuated Zika vaccine induces protective immunity. EBioMedicine, 2018, 36, 92-102.	2.7	37
40	Evaluation of a Novel Reporter Virus Neutralization Test for Serological Diagnosis of Zika and Dengue Virus Infection. Journal of Clinical Microbiology, 2017, 55, 3028-3036.	1.8	35
41	Peli1 facilitates virus replication and promotes neuroinflammation during West Nile virus infection. Journal of Clinical Investigation, 2018, 128, 4980-4991.	3.9	34
42	Genetic and biochemical characterizations of Zika virus NS2A protein. Emerging Microbes and Infections, 2019, 8, 585-602.	3.0	32
43	Maternal vaccination and protective immunity against Zika virus vertical transmission. Nature Communications, 2019, 10, 5677.	5.8	32
44	Role of mutational reversions and fitness restoration in Zika virus spread to the Americas. Nature Communications, 2021, 12, 595.	5.8	29
45	Low toxicity and high immunogenicity of an inactivated vaccine candidate against COVID-19 in different animal models. Emerging Microbes and Infections, 2020, 9, 2606-2618.	3.0	28
46	Restriction of Zika Virus by Host Innate Immunity. Cell Host and Microbe, 2016, 19, 566-567.	5.1	27
47	Role of microglia in the dissemination of Zika virus from mother to fetal brain. PLoS Neglected Tropical Diseases, 2020, 14, e0008413.	1.3	27
48	Generation of a recombinant West Nile virus stably expressing the Gaussia luciferase for neutralization assay. Virus Research, 2016, 211, 17-24.	1.1	25
49	Molecular basis of dengue virus serotype 2 morphological switch from 29°C to 37°C. PLoS Pathogens, 2019, 15, e1007996.	2.1	25
50	Small Molecules and Antibodies for Zika Therapy. Journal of Infectious Diseases, 2017, 216, S945-S950.	1.9	23
51	RBD-homodimer, a COVID-19 subunit vaccine candidate, elicits immunogenicity and protection in rodents and nonhuman primates. Cell Discovery, 2021, 7, 82.	3.1	22
52	Development of a stable Gaussia luciferase enterovirus 71 reporter virus. Journal of Virological Methods, 2015, 219, 62-66.	1.0	21
53	Zika virus infection elicits auto-antibodies to C1q. Scientific Reports, 2018, 8, 1882.	1.6	21
54	A mutation-mediated evolutionary adaptation of Zika virus in mosquito and mammalian host. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19

#	Article	IF	CITATIONS
55	Topoisomerase III- \hat{I}^2 is required for efficient replication of positive-sense RNA viruses. Antiviral Research, 2020, 182, 104874.	1.9	17
56	Protective Efficacy of Inactivated Vaccine against SARS-CoV-2 Infection in Mice and Non-Human Primates. Virologica Sinica, 2021, 36, 879-889.	1.2	17
57	An attenuated Zika virus NS4B protein mutant is a potent inducer of antiviral immune responses. Npj Vaccines, 2019, 4, 48.	2.9	14
58	Using a Virion Assembly-Defective Dengue Virus as a Vaccine Approach. Journal of Virology, 2018, 92, .	1.5	13
59	Peli1 signaling blockade attenuates congenital zika syndrome. PLoS Pathogens, 2020, 16, e1008538.	2.1	13
60	A human antibody of potent efficacy against SARS-CoV-2 in rhesus macaques showed strong blocking activity to B.1.351. MAbs, 2021, 13, 1930636.	2.6	13
61	Zika structural genes determine the virulence of African and Asian lineages. Emerging Microbes and Infections, 2020, 9, 1023-1033.	3.0	11
62	Reverse Genetics of Zika Virus. Methods in Molecular Biology, 2017, 1602, 47-58.	0.4	10
63	Vesicular Stomatitis Virus and DNA Vaccines Expressing Zika Virus Nonstructural Protein 1 Induce Substantial but Not Sterilizing Protection against Zika Virus Infection. Journal of Virology, 2020, 94, .	1.5	10
64	Zika virus induces neuronal and vascular degeneration in developing mouse retina. Acta Neuropathologica Communications, 2021, 9, 97.	2.4	10
65	Potential Mechanisms for Enhanced Zika Epidemic and Disease. ACS Infectious Diseases, 2018, 4, 656-659.	1.8	9
66	mRNA based vaccines provide broad protection against different SARS-CoV-2 variants of concern. Emerging Microbes and Infections, 2022, 11, 1550-1553.	3.0	9
67	Characterization of a candidate tetravalent vaccine based on 2'-O-methyltransferase mutants. PLoS ONE, 2018, 13, e0189262.	1.1	7
68	Development and characterization of West Nile virus replicon expressing secreted Gaussia Luciferase. Virologica Sinica, 2013, 28, 161-166.	1.2	6
69	Genetic stability of live-attenuated Zika vaccine candidates. Antiviral Research, 2019, 171, 104596.	1.9	6
70	Inhibition of innate immune response ameliorates Zika virus-induced neurogenesis deficit in human neural stem cells. PLoS Neglected Tropical Diseases, 2021, 15, e0009183.	1.3	6
71	A genetically stable Zika virus vaccine candidate protects mice against virus infection and vertical transmission. Npj Vaccines, 2021, 6, 27.	2.9	5
72	Infection and pathogenesis of the Delta variant of SARS-CoV-2 in Rhesus macaque. Virologica Sinica, 2022, , .	1,2	4

#	Article	IF	Citations
73	Using Next Generation Sequencing to Study the Genetic Diversity of Candidate Live Attenuated Zika Vaccines. Vaccines, 2020, 8, 161.	2.1	3
74	Reporter Virus Neutralization Test Evaluation for Dengue and Zika Virus Diagnosis in Flavivirus Endemic Area. Pathogens, 2021, 10, 840.	1.2	3
75	Role of microglia in the dissemination of Zika virus from mother to fetal brain. , 2020, 14, e0008413.		O
76	Role of microglia in the dissemination of Zika virus from mother to fetal brain., 2020, 14, e0008413.		0
77	Role of microglia in the dissemination of Zika virus from mother to fetal brain. , 2020, 14, e0008413.		0
78	Role of microglia in the dissemination of Zika virus from mother to fetal brain., 2020, 14, e0008413.		0
79	Role of microglia in the dissemination of Zika virus from mother to fetal brain. , 2020, 14, e0008413.		0
80	Role of microglia in the dissemination of Zika virus from mother to fetal brain., 2020, 14, e0008413.		0