Guo-Qing Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/428845/publications.pdf

Version: 2024-02-01

		516215	4	454577	
32	1,706 citations	16		30	
papers	citations	h-index		g-index	
22	22	22		2010	
33	33	33		2910	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. Journal of Power Sources, 2016, 307, 391-400.	4.0	499
2	Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors. Electrochemistry Communications, 2007, 9, 1282-1287.	2.3	283
3	Lithium–Air Batteries Using SWNT/CNF Buckypapers as Air Electrodes. Journal of the Electrochemical Society, 2010, 157, A953.	1.3	201
4	$\hat{l}\pm$ -MnO2/Carbon Nanotube/Carbon Nanofiber Composite Catalytic Air Electrodes for Rechargeable Lithium-air Batteries. Journal of the Electrochemical Society, 2011, 158, A822.	1.3	113
5	Electrochemical characteristics and impedance spectroscopy studies of nano-cobalt silicate hydroxide for supercapacitor. Journal of Power Sources, 2006, 161, 723-729.	4.0	105
6	Large scale hydrothermal synthesis and electrochemistry of ammonium vanadium bronze nanobelts. Journal of Power Sources, 2006, 157, 528-532.	4.0	61
7	Heteroatom doped porous carbon sheets derived from protein-rich wheat gluten for supercapacitors: The synergistic effect of pore properties and heteroatom on the electrochemical performance in different electrolytes. Journal of Power Sources, 2018, 401, 375-385.	4.0	55
8	A new air electrode based on carbon nanotubes and Ag–MnO2 for metal air electrochemical cells. Carbon, 2004, 42, 3097-3102.	5.4	54
9	Temperature-dependent performance of carbon-based supercapacitors with water-in-salt electrolyte. Journal of Power Sources, 2019, 441, 227220.	4.0	53
10	MnO2/MCMB electrocatalyst for all solid-state alkaline zinc-air cells. Electrochimica Acta, 2004, 49, 873-877.	2.6	43
11	A novel alkaline Zn/MnO2 cell with alkaline solid polymer electrolyte. Solid State Ionics, 2003, 160, 155-159.	1.3	33
12	Factors Influencing the Growth of Pt Nanowires via Chemical Selfâ€Assembly and their Fuel Cell Performance. Small, 2015, 11, 3377-3386.	5.2	30
13	Characterization and electrochemical applications of a carbon with high density of surface functional groups produced from beer yeast. Journal of Solid State Electrochemistry, 2009, 13, 887-893.	1.2	23
14	Preparation, Characterization and Electrochemical Catalytic Properties of Hollandite Ag ₂ Mn ₈ O ₁₆ for Li-Air Batteries. Journal of the Electrochemical Society, 2012, 159, A310-A314.	1.3	22
15	Morphology-dependent electrochemical supercapacitive characteristics of nanostructured manganese dioxide. Journal of Applied Electrochemistry, 2009, 39, 1033-1038.	1.5	19
16	Self-assembly preparation of mesoporous hollow nanospheric manganese dioxide and its application in zinc-air battery. Journal of Solid State Electrochemistry, 2006, 10, 995-1001.	1.2	18
17	Preparation of Bi2WO6 photocatalyst by high-energy ball milled Bi2O3-WO3 mixture. Ceramics International, 2016, 42, 16749-16757.	2.3	16
18	B, O and N Codoped Biomass-Derived Hierarchical Porous Carbon for High-Performance Electrochemical Energy Storage. Nanomaterials, 2022, 12, 1720.	1.9	15

#	Article	IF	Citations
19	Electrochemical characterization on layered lithium ruthenate for electrochemical supercapacitors. Solid State Ionics, 2006, 177, 1335-1339.	1.3	13
20	Synthesis and characterization of aniline ando-toluidine conducting copolymer microtubes with the template-synthesis method. Journal of Applied Polymer Science, 2005, 96, 1539-1543.	1.3	10
21	Electric-field-induced structural and electronic changes and decomposition of an energetic complex: a computational study on zinc carbohydrazide perchlorate crystals. RSC Advances, 2015, 5, 22601-22608.	1.7	9
22	Influence of cation (NH4+) on electrochemical characteristics of MnO2 nanowire synthesized by hydrothermal method. Journal of Solid State Electrochemistry, 2005, 9, 655-659.	1.2	8
23	Ag/AgBr coupled low crystalline Nb ₂ O ₅ as an effective photocatalyst for the degradation of rhodamine B. Journal of Materials Research, 2020, 35, 1692-1702.	1.2	6
24	FeNb ₂ O ₆ /reduced graphene oxide composites with intercalation pseudo-capacitance enabling ultrahigh energy density for lithium-ion capacitors. RSC Advances, 2021, 11, 32248-32257.	1.7	4
25	Theoretical study of the correlation between electrostatic hazard and electronic structure for some typical primary explosives. Journal of Molecular Modeling, 2015, 21, 200.	0.8	3
26	Highly hydrophilic ordered mesoporous carbon–organic polymer composite and its applications in direct electrochemistry and the possibility of biosensing1. Journal of Applied Electrochemistry, 2016, 46, 593-601.	1.5	3
27	A Pd nanoparticle anchored on PEDOT-modified \$\$hbox {MnO}_{2}\$\$ nanostructure as aÂhighly stable and efficient cathode catalyst for oxygen reduction reaction. Journal of Applied Electrochemistry, 2019, 49, 909-915.	1.5	3
28	Synthesis of sodium iron silicate(NaFe(III)[SiO3]2) nanorods and electrochemical characterization. Materials Letters, 2009, 63, 266-268.	1.3	2
29	Preparation of lithium indium oxide via a rheological phase route and its electrochemical characteristics in LiOH and Li2SO4solutions. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 101-105.	0.8	1
30	Charge-Discharge Mechanisms of Ammonium Vanadium Bronze NH4V4O10 Nanobelts as Cathode for Lithium-ion Battery. , 2009, , .		0
31	Preparation, Characterization and Electrochemical Catalytic Properties of Hollandite Ag2Mn8O16 for Lithium-Air Batteries. ECS Transactions, 2011, 35, 43-46.	0.3	0
32	High Hydrophilic Mesoporous Carbon As Support of Pd Electrocatalyst for Ethanol Oxidation. ECS Meeting Abstracts, 2016 , , .	0.0	0