Manuel Criado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4288396/publications.pdf

Version: 2024-02-01

		136885	138417
100	3,678	32	58
papers	citations	h-index	g-index
101	101	101	2187
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Natural Polyhydroxy Flavonoids, Curcuminoids, and Synthetic Curcumin Analogs as α7 nAChRs Positive Allosteric Modulators. International Journal of Molecular Sciences, 2021, 22, 973.	1.8	6
2	Functional evidence for the inflammatory reflex in teleosts: A novel $\hat{l}\pm7$ nicotinic acetylcholine receptor modulates the macrophage response to dsRNA. Developmental and Comparative Immunology, 2018, 84, 279-291.	1.0	9
3	Acetylcholine nicotinic receptor subtypes in chromaffin cells. Pflugers Archiv European Journal of Physiology, 2018, 470, 13-20.	1.3	22
4	$\langle i \rangle N \langle i \rangle$ -Benzylpiperidine Derivatives as α7 Nicotinic Receptor Antagonists. ACS Chemical Neuroscience, 2016, 7, 1157-1165.	1.7	7
5	Effect of Triazine Derivatives on Neuronal Nicotinic Receptors. ACS Chemical Neuroscience, 2014, 5, 683-689.	1.7	5
6	Chalcones as positive allosteric modulators of $\hat{l}\pm7$ nicotinic acetylcholine receptors: A new target for a privileged structure. European Journal of Medicinal Chemistry, 2014, 86, 724-739.	2.6	23
7	Expression and functional properties of $\hat{l}\pm7$ acetylcholine nicotinic receptors are modified in the presence of other receptor subunits. Journal of Neurochemistry, 2012, 123, 504-514.	2.1	20
8	Mutants of βâ€strand β3 and the loop B in the interface between α7 subunits of a homomeric acetylcholine receptor show functional and pharmacological alterations. Journal of Neurochemistry, 2011, 118, 968-978.	2.1	1
9	Substitutions of amino acids in the pore domain of homomeric $\hat{l}\pm7$ nicotinic receptors for analogous residues present in heteromeric receptors modify gating, rectification and binding properties. Journal of Neurochemistry, 2011, 119, 40-49.	2.1	4
10	A small cytoplasmic region adjacent to the fourth transmembrane segment of the $\hat{l}\pm7$ nicotinic receptor is essential for its biogenesis. FEBS Letters, 2011, 585, 2477-2480.	1.3	5
11	The loop between βâ€strands β2 and β3 and its interaction with the Nâ€terminal αâ€helix is essential for biogenesis of α7 nicotinic receptors. Journal of Neurochemistry, 2010, 112, 103-111.	2.1	8
12	Role of the extracellular transmembrane domain interface in gating and pharmacology of a heteromeric neuronal nicotinic receptor. Journal of Neurochemistry, 2010, 113, 1036-1045.	2.1	6
13	Ric-3 Promotes Â7 Nicotinic Receptor Assembly and Trafficking through the ER Subcompartment of Dendrites. Journal of Neuroscience, 2010, 30, 10112-10126.	1.7	48
14	Role of loop 9 on the function of neuronal nicotinic receptors. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 654-659.	1.4	3
15	Investigating the role of protein folding and assembly in cell-type dependent expression of $\hat{l}\pm7$ nicotinic receptors using a green fluorescent protein chimera. Brain Research, 2009, 1259, 7-16.	1.1	7
16	Singleâ€channel study of the binding–gating coupling in the slowly desensitizing chimeric α7â€5HT3A receptor. FEBS Letters, 2009, 583, 1045-1051.	1.3	2
17	Role of the Nâ€terminal αâ€helix in biogenesis of α7 nicotinic receptors. Journal of Neurochemistry, 2009, 108, 1399-1409.	2.1	20
18	Binding–gating coupling in a nondesensitizing α7 nicotinic receptor. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 410-416.	1.4	3

#	Article	IF	Citations
19	Nicotinic acetylcholine receptors of adrenal chromaffin cells. Acta Physiologica, 2008, 192, 203-212.	1.8	74
20	Molecular characterization and localization of the RICâ€3 protein, an effector of nicotinic acetylcholine receptor expression. Journal of Neurochemistry, 2008, 105, 617-627.	2.1	28
21	Cytoplasmic regions adjacent to the M3 and M4 transmembrane segments influence expression and function of ?7 nicotinic acetylcholine receptors. A study with single amino acid mutants. Journal of Neurochemistry, 2007, 100, 406-415.	2.1	16
22	Nonâ€charged amino acids from three different domains contribute to link agonist binding to channel gating in α7 nicotinic acetylcholine receptors. Journal of Neurochemistry, 2007, 103, 725-735.	2.1	9
23	Interactions between loop 5 and \hat{l}^2 -strand \hat{l}^2 6' are involved in $\hat{l}\pm 7$ nicotinic acetylcholine receptors channel gating. Journal of Neurochemistry, 2007, 104, 071027034430001-???.	2.1	7
24	Improved gating of a chimeric $\hat{l}\pm7$ -5HT3Areceptor upon mutations at the M2-M3 extracellular loop. FEBS Letters, 2006, 580, 256-260.	1.3	15
25	Corrigendum to "Improved gating of a chimeric α7-5HT3Areceptor upon mutations at the M2-M3 extracellular loop―[FEBS Lett. 580 (2006) 256-260]. FEBS Letters, 2006, 580, 6518-6518.	1.3	0
26	Intragranular pH rapidly modulates exocytosis in adrenal chromaffin cells. Journal of Neurochemistry, 2006, 96, 324-334.	2.1	73
27	Role of the RIC-3 Protein in Trafficking of Serotonin and Nicotinic Acetylcholine Receptors. Journal of Molecular Neuroscience, 2006, 30, 153-156.	1.1	20
28	Activation and blockade by choline of bovine $\hat{1}\pm7$ and $\hat{1}\pm3\hat{1}^24$ nicotinic receptors expressed in oocytes. European Journal of Pharmacology, 2006, 535, 53-60.	1.7	9
29	The cysteine-rich with EGF-Like domains 2 (CRELD2) protein interacts with the large cytoplasmic domain of human neuronal nicotinic acetylcholine receptor alpha4 and beta2 subunits. Journal of Neurochemistry, 2005, 95, 1585-1596.	2.1	27
30	Mutations of a Conserved Lysine Residue in the N-Terminal Domain of $\hat{l}\pm7$ Nicotinic Receptors Affect Gating and Binding of Nicotinic Agonists. Molecular Pharmacology, 2005, 68, 1669-1677.	1.0	21
31	Dual Role of the RIC-3 Protein in Trafficking of Serotonin and Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2005, 280, 27062-27068.	1.6	89
32	Charged Amino Acids of the N-terminal Domain Are Involved in Coupling Binding and Gating in $\hat{l}\pm7$ Nicotinic Receptors. Journal of Biological Chemistry, 2005, 280, 6642-6647.	1.6	42
33	Potentiation of human $\hat{1}\pm4\hat{1}^22$ neuronal nicotinic receptors by a Flustra foliacea metabolite. Neuroscience Letters, 2005, 373, 144-149.	1.0	53
34	A cholineâ€evoked [Ca 2+] C signal causes catecholamine release and hyperpolarization of chromaffin cells. FASEB Journal, 2004, 18, 1468-1470.	0.2	21
35	Glucocorticoid activation of the neuronal nicotinic acetylcholine receptor α7 subunit gene: involvement of transcription factor Egr-1. FEBS Letters, 2004, 566, 247-250.	1.3	26
36	Immunohistochemical localization of the voltage-gated potassium channel subunit Kv1.4 in the central nervous system of the adult rat. Journal of Chemical Neuroanatomy, 2003, 26, 209-224.	1.0	34

#	Article	IF	Citations
37	Transcriptional Regulation by Activation and Repression Elements Located at the 5′-Noncoding Region of the Human α9 Nicotinic Receptor Subunit Gene. Journal of Biological Chemistry, 2003, 278, 37249-37255.	1.6	16
38	Conservation within the RIC-3 Gene Family. Journal of Biological Chemistry, 2003, 278, 34411-34417.	1.6	161
39	Transcription Factors NF-Y and Sp1 Are Important Determinants of the Promoter Activity of the Bovine and Human Neuronal Nicotinic Receptor \hat{l}^2 4 Subunit Genes. Journal of Biological Chemistry, 2002, 277, 8866-8876.	1.6	21
40	Effects of Ginsenoside Rg2 on Human Neuronal Nicotinic Acetylcholine Receptors. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 1052-1059.	1.3	77
41	Modifications in the C Terminus of the Synaptosome-associated Protein of 25 kDa (SNAP-25) and in the Complementary Region of Synaptobrevin Affect the Final Steps of Exocytosis. Journal of Biological Chemistry, 2002, 277, 9904-9910.	1.6	51
42	Role of the Large Cytoplasmic Loop of the α7 Neuronal Nicotinic Acetylcholine Receptor Subunit in Receptor Expression and Functionâ€. Biochemistry, 2002, 41, 7931-7938.	1.2	32
43	Effects of ginsenosides, active components of ginseng, on nicotinic acetylcholine receptors expressed in Xenopus oocytes. European Journal of Pharmacology, 2002, 442, 37-45.	1.7	57
44	Effects of benzothiazepines on human neuronal nicotinic receptors expressed in Xenopus oocytes. British Journal of Pharmacology, 2002, 136, 183-192.	2.7	13
45	A Single Neuronal Nicotinic Receptor $\hat{l}\pm3\hat{l}\pm7\hat{l}^24^*$ Is Present in the Bovine Chromaffin Cell. Annals of the New York Academy of Sciences, 2002, 971, 165-167.	1.8	10
46	Multiple Roles of the Conserved Key Residue Arginine 209 in Neuronal Nicotinic Receptorsâ€. Biochemistry, 2001, 40, 8300-8306.	1.2	19
47	Activity of the Nicotinic Acetylcholine Receptorα5 andα7 Subunit Promoters in Muscle Cells. DNA and Cell Biology, 2001, 20, 657-666.	0.9	17
48	Phorbol Ester Activation of the Neuronal Nicotinic Acetylcholine Receptor $\hat{l}\pm7$ Subunit Gene. Journal of Neurochemistry, 2000, 74, 932-939.	2.1	24
49	Subcellular compartmentalization of a potassium channel ($Kv1.4$): preferential distribution in dendrites and dendritic spines of neurons in the dorsal cochlear nucleus. European Journal of Neuroscience, 2000, 12, 4345-4356.	1.2	5
50	Subcellular compartmentalization of a potassium channel ($Kv1.4$): preferential distribution in dendrites and dendritic spines of neurons in the dorsal cochlear nucleus. European Journal of Neuroscience, 2000, 12, 4345-4356.	1.2	1
51	A single amino acid near the C terminus of the synaptosomeassociated protein of 25 kDa (SNAP-25) is essential for exocytosis in chromaffin cells. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 7256-7261.	3.3	87
52	Multiple Functional Sp1 Domains in the Minimal Promoter Region of the Neuronal Nicotinic Receptor α5 Subunit Gene. Journal of Biological Chemistry, 1999, 274, 4693-4701.	1.6	34
53	Gating of $\hat{l}\pm 3$ \hat{l}^2 4 neuronal nicotinic receptor can be controlled by the loop M2-M3 of both $\hat{l}\pm 3$ and \hat{l}^2 4 subunits. Pflugers Archiv European Journal of Physiology, 1999, 439, 86-92.	1.3	18
54	A residue in the middle of the M2-M3 loop of the \hat{I}^2 4subunit specifically affects gating of neuronal nicotinic receptors. FEBS Letters, 1998, 433, 89-92.	1.3	30

#	Article	IF	Citations
55	GC- and E-box Motifs as Regulatory Elements in the Proximal Promoter Region of the Neuronal Nicotinic Receptor α7 Subunit Gene. Journal of Biological Chemistry, 1998, 273, 20021-20028.	1.6	34
56	Role of the Putative Transmembrane Segment M3 in Gating of Neuronal Nicotinic Receptorsâ€. Biochemistry, 1997, 36, 2709-2715.	1.2	27
57	Differential Expression of α-Bungarotoxin-Sensitive Neuronal Nicotinic Receptors in Adrenergic Chromaffin Cells: A Role for Transcription Factor Egr-1. Journal of Neuroscience, 1997, 17, 6554-6564.	1.7	65
58	Expression of $\hat{l}\pm 7$ neuronal nicotinic receptors during postnatal development of the rat cerebellum. Developmental Brain Research, 1997, 98, 125-133.	2.1	47
59	Acetylcholine receptor subunit homomer formation requires compatibility between amino acid residues of the M 1 and M 2 transmembrane segments. FEBS Letters, 1996, 399, 83-86.	1.3	12
60	A single residue in the M2-M3 loop is a major determinant of coupling between binding and gating in neuronal nicotinic receptors Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 6118-6123.	3.3	87
61	Documentation of coomassie-stained protein gels using a UV transilluminator. Trends in Genetics, 1995, 11, 40.	2.9	0
62	α-Bungarotoxin-sensitive Nicotinic Receptors on Bovine Chromaffin Cells: Molecular Cloning, Functional Expression and Alternative Splicing of the α7 Subunit. European Journal of Neuroscience, 1995, 7, 647-655.	1.2	101
63	Immunocytochemical localization of the ?7 subunit of the nicotinic acetylcholine receptor in the rat central nervous system. Journal of Comparative Neurology, 1994, 349, 325-342.	0.9	237
64	A delayed rectifier potassium channel cloned from bovine adrenal medulla Functional analysis after expression in Xenopus oocytes and in a neuroblastoma cell line. FEBS Letters, 1994, 354, 173-176.	1.3	6
65	Role of Two Acetylcholine Receptor Subunit Domains in Homomer Formation and Intersubunit Recognition, as Revealed by .alpha.3 and .alpha.7 Subunit Chimeras. Biochemistry, 1994, 33, 15198-15203.	1.2	55
66	Molecular cloning and functional expression of potassium channels from the adrenal medulla. Biochemical Society Transactions, 1994, 22, 817-821.	1.6	0
67	Molecular cloning and permanent expression in a neuroblastoma cell line of a fast inactivating potassium channel from bovine adrenal medulla. FEBS Letters, 1992, 308, 283-289.	1.3	17
68	Primary structure of an agonist binding subunit of the nicotinic acetylcholine receptor from bovine adrenal chromaffin cells. Neurochemical Research, 1992, 17, 281-287.	1.6	71
69	Muscarinic receptor subtypes in bovine adrenal medulla. Neurochemical Research, 1992, 17, 1235-1239.	1.6	7
70	Primary structure and functional expression of the alpha-, beta-, gamma-, delta- and e-subunits of the acetylcholine receptor from rat muscle. FEBS Journal, 1990, 194, 437-448.	0.2	108
71	Assembly of an adult type acetylcholine receptor in a mouse cell line transfected with rat muscle ϵ-subunit DNA. FEBS Letters, 1990, 270, 95-99.	1.3	11
72	Developmental regulation of five subunit specific mRNAs encoding acetylcholine receptor subtypes in rat muscle. FEBS Letters, 1989, 242, 419-424.	1.3	131

#	Article	IF	CITATIONS
73	Single channel recordings of reconstituted ion channel proteins: an improved technique. Pflugers Archiv European Journal of Physiology, 1988, 411, 94-100.	1.3	58
74	Nucleotide sequence of the rat muscle acetylcholine receptor \hat{A} -subunit. Nucleic Acids Research, 1988, 16, 10920-10920.	6.5	24
75	Using Monoclonal Antibodies to Determine the Structures of Acetylcholine Receptors from Electric Organs, Muscles, and Neurons. Annals of the New York Academy of Sciences, 1987, 505, 208-225.	1.8	30
76	A membrane fusion strategy for single-channel recordings of membranes usually non-accessible to patch-clamp pipette electrodes. FEBS Letters, 1987, 224, 172-176.	1.3	147
77	Location of antigenic determinants of primary sequences of the subunits of nicotinic acetylcholine receptor by peptide mapping. Biochemistry, 1986, 25, 2621-2632.	1.2	153
78	Structural heterogeneity of the .alpha. subunits of the nicotinic acetylcholine receptor in relation to agonist affinity alkylation and antagonist binding. Biochemistry, 1986, 25, 4268-4275.	1.2	29
79	Evidence that the acetylcholine binding site is not formed by the sequence .alpha.127-143 of the acetylcholine receptor. Biochemistry, 1986, 25, 2839-2846.	1.2	61
80	Use of monoclonal antibodies in exploring the structure of the acetylcholine receptor. Biochemical Society Transactions, 1985, 13, 14-16.	1.6	2
81	Evidence for unpredicted transmembrane domains in acetylcholine receptor subunits Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 2004-2008.	3.3	99
82	Structural localization of the sequence α235–242 of the nicotinic acetylcholine receptor. Biochemical and Biophysical Research Communications, 1985, 128, 864-871.	1.0	28
83	A comparison of the translational diffusion of a monomer and an oligomer of the acetylcholine receptor protein reconstituted into soybean lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1985, 819, 18-22.	1.4	11
84	Immunochemical tests of acetylcholine receptor subunit models. Nature, 1984, 311, 573-575.	13.7	75
85	Conversion of acetylcholine receptor dimers to monomers upon depletion of non-receptor peripheral proteins. Biochimica Et Biophysica Acta - General Subjects, 1984, 798, 374-381.	1.1	12
86	The Delipidation of Brain Proteolipid Protein by Ultrafiltration. Journal of Neurochemistry, 1983, 40, 585-588.	2.1	11
87	Sulphydryl groups and iodo-[3H]acetic acid labeling in proteolipids from Torpedo electroplax. Neurochemical Research, 1983, 8, 629-635.	1.6	0
88	Effects of lipids on acetylcholine receptor. Essential need of cholesterol for maintenance of agonist-induced state transitions in lipid vesicles. Biochemistry, 1982, 21, 3622-3629.	1.2	186
89	Translational diffusion of acetylcholine receptor (monomeric and dimeric forms) of Torpedo marmorata reconstituted into phospholipid bilayers studied by fluorescence recovery after photobleaching. Biochemistry, 1982, 21, 5750-5755.	1,2	51
90	Effects of periodate oxidation and glycosidases on structural and functional properties of the acetylcholine receptor and the non-receptor, peripheral $\hat{l}\frac{1}{2}$ -polypeptide (Mr 43,000). Neurochemistry International, 1982, 4, 289-302.	1.9	11

#	Article	IF	CITATION
91	Size dependence of the translational diffusion of large integral membrane proteins in liquid-crystalline phase lipid bilayers. A study using fluorescence recovery after photobleaching. Biochemistry, 1982, 21, 5608-5612.	1.2	126
92	Purification and Chemical Characterization of a W2 Protein from Brain Myelin. Journal of Neurochemistry, 1982, 39, 507-511.	2.1	7
93	Method for Lyophilizing Brain Proteolipid Preparation That Increases Subsequent Solubilization by Detergent. Journal of Neurochemistry, 1982, 39, 1733-1736.	2.1	15
94	Action of detergents and pre- and postsynaptic localization of 3H-naloxone binding in synaptosomal membranes. A structural approach. Journal of Neurobiology, 1981, 12, 259-267.	3.7	6
95	Cholinergic Binding to the Receptor Proteolipid fromTorpedoElectroplax Separated by Ion Exchange Chromatography. Journal of Receptors and Signal Transduction, 1980, 1, 169-198.	1.2	2
96	The use of p-toluene sulfonate to dissolve synaptosomal membrane proteins into organic solvents. Analytical Biochemistry, 1980, 103, 289-294.	1.1	5
97	Protection by atropine of the inhibition caused by triton X-100 on central muscarinic receptors. European Journal of Pharmacology, 1980, 63, 251-257.	1.7	17
98	Action of detergents on 3H-dihydroergokriptine binding and localization of \hat{l}_{\pm} -adrenoceptors in synaptosomal membranes. European Journal of Pharmacology, 1980, 61, 47-53.	1.7	10
99	Inhibition by local anesthetics, phentolamine and propranolol of [3H]Quinuclydinyl benzylate binding to central muscarinic receptors. European Journal of Pharmacology, 1980, 68, 317-326.	1.7	24
100	Pre- and postsynaptic localization of central muscarinic receptors. European Journal of Pharmacology, 1979, 57, 227-230.	1.7	25