List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4287987/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dissecting lightning strike hazard impact patterns to National Airspace System facilities in the contiguous United States. Computers, Environment and Urban Systems, 2022, 91, 101735.	7.1	2
2	Data science approaches to confronting the COVID-19 pandemic: a narrative review. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20210127.	3.4	28
3	Percolation of temporal hierarchical mobility networks during COVID-19. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20210116.	3.4	5
4	Reviving a failed network through microscopic interventions. Nature Physics, 2022, 18, 338-349.	16.7	25
5	A Network Observability Framework for Sensor Placement in Flood Control Networks to Improve Flood Situational Awareness and Risk Management. Reliability Engineering and System Safety, 2022, 221, 108366.	8.9	13
6	Modest flooding can trigger catastrophic road network collapse due to compound failure. Communications Earth & Environment, 2022, 3, .	6.8	16
7	Identifying the shifting sources to predict the dynamics of COVID-19 in the U.S Chaos, 2022, 32, 033104.	2.5	2
8	Vaccination and three non-pharmaceutical interventions determine the dynamics of COVID-19 in the US. Humanities and Social Sciences Communications, 2022, 9, .	2.9	2
9	Network resilience. Physics Reports, 2022, 971, 1-108.	25.6	51
10	Discrimination reveals reconstructability of multiplex networks from partial observations. Communications Physics, 2022, 5, .	5.3	6
11	Robustness of interdependent scale-free networks based on link addition strategies. Physica A: Statistical Mechanics and Its Applications, 2022, 604, 127851.	2.6	7
12	The impact of non-pharmaceutical interventions on the prevention and control of COVID-19 in New York City. Chaos, 2021, 31, 021101.	2.5	17
13	Concurrence Percolation in Quantum Networks. Physical Review Letters, 2021, 126, 170501.	7.8	10
14	Heuristic assessment of choices for risk network control. Scientific Reports, 2021, 11, 7645.	3.3	1
15	High-resolution human mobility data reveal race and wealth disparities in disaster evacuation patterns. Humanities and Social Sciences Communications, 2021, 8, .	2.9	26
16	Country distancing increase reveals the effectiveness of travel restrictions in stopping COVID-19 transmission. Communications Physics, 2021, 4, .	5.3	20
17	Nuclear reaction network unveils novel reaction patterns based on stellar energies. New Journal of Physics, 2021, 23, 083035.	2.9	1
18	From data to complex network control of airline flight delays. Scientific Reports, 2021, 11, 18715.	3.3	4

#	Article	IF	CITATIONS
19	Percolation of edge-coupled interdependent networks. Physica A: Statistical Mechanics and Its Applications, 2021, 580, 126136.	2.6	10
20	Vaccination intentions generate racial disparities in the societal persistence of COVID-19. Scientific Reports, 2021, 11, 19906.	3.3	5
21	Network percolation reveals adaptive bridges of the mobility network response to COVID-19. PLoS ONE, 2021, 16, e0258868.	2.5	11
22	A quantification method of non-failure cascading spreading in a network of networks. Chaos, 2021, 31, 123122.	2.5	2
23	Polarization and tipping points. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	39
24	Universality of noise-induced resilience restoration in spatially-extended ecological systems. Communications Physics, 2021, 4, .	5.3	5
25	Co-adaptation enhances the resilience of mutualistic networks. Journal of the Royal Society Interface, 2020, 17, 20200236.	3.4	6
26	Multiple metastable network states in urban traffic. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17528-17534.	7.1	36
27	Robustness and lethality in multilayer biological molecular networks. Nature Communications, 2020, 11, 6043.	12.8	61
28	Nonlinear model of cascade failure in weighted complex networks considering overloaded edges. Scientific Reports, 2020, 10, 13428.	3.3	13
29	Modeling competitive evolution of multiple languages. PLoS ONE, 2020, 15, e0232888.	2.5	3
30	An Integrated Approach for Assessing the Impact of Large‣cale Future Floods on a Highway Transport System. Risk Analysis, 2020, 40, 1780-1794.	2.7	14
31	Robustness of interdependent networks based on bond percolation. Europhysics Letters, 2020, 130, 38003.	2.0	5
32	Measuring the Topological Robustness of Transportation Networks to Disaster-Induced Failures: A Percolation Approach. Journal of Infrastructure Systems, 2020, 26, .	1.8	38
33	Resilience centrality in complex networks. Physical Review E, 2020, 101, 022304.	2.1	18
34	True Nonlinear Dynamics from Incomplete Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34, 131-138.	4.9	6
35	Inferring Degrees from Incomplete Networks and Nonlinear Dynamics. , 2020, , .		3
36	Towards perturbation prediction of biological networks using deep learning. Scientific Reports, 2019, 9, 11941.	3.3	12

#	Article	IF	CITATIONS
37	Cluster-based topological features of nodes in a multiplex network—from a network of networks perspective. New Journal of Physics, 2019, 21, 103014.	2.9	1
38	Universal behavior of cascading failures in interdependent networks. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22452-22457.	7.1	68
39	Robust component: a robustness measure that incorporates access to critical facilities under disruptions. Journal of the Royal Society Interface, 2019, 16, 20190149.	3.4	43
40	Ultrafast synchronization via local observation. New Journal of Physics, 2019, 21, 013040.	2.9	4
41	Local floods induce large-scale abrupt failures of road networks. Nature Communications, 2019, 10, 2114.	12.8	69
42	Synchronization of interconnected heterogeneous networks: The role of network sizes. Scientific Reports, 2019, 9, 6154.	3.3	2
43	The evolution of polarization in the legislative branch of government. Journal of the Royal Society Interface, 2019, 16, 20190010.	3.4	11
44	A novel network control model for identifying personalized driver genes in cancer. PLoS Computational Biology, 2019, 15, e1007520.	3.2	50
45	Multiple phase transitions in networks of directed networks. Physical Review E, 2019, 99, 012312.	2.1	19
46	A novel network control model for identifying personalized driver genes in cancer. , 2019, 15, e1007520.		0
47	A novel network control model for identifying personalized driver genes in cancer. , 2019, 15, e1007520.		0
48	A novel network control model for identifying personalized driver genes in cancer. , 2019, 15, e1007520.		0
49	A novel network control model for identifying personalized driver genes in cancer. , 2019, 15, e1007520.		0
50	A novel network control model for identifying personalized driver genes in cancer. , 2019, 15, e1007520.		0
51	Aviation Transportation, Cyber Threats, and Network-of-Networks: Modeling Perspectives for Translating Theory to Practice. , 2018, , .		1
52	The Critical Penetration Level in Oscillator-Based Smart Grid. , 2018, , .		0
53	A mobility network approach to identify and anticipate large crowd gatherings. Transportation Research Part B: Methodological, 2018, 114, 147-170.	5.9	45
54	Designing pinning network controllability for interdependent dynamical networks. , 2018, , .		2

4

#	Article	IF	CITATIONS
55	Generalized model for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>k</mml:mi> -core percolation and interdependent networks. Physical Review E, 2017, 96, 032317.</mml:math 	2.1	16
56	The Co-Evolution Model for Social Network Evolving and Opinion Migration. , 2017, , .		10
57	Controllability of giant connected components in a directed network. Physical Review E, 2017, 95, 042318.	2.1	24
58	Controllability of multiplex, multi-time-scale networks. Physical Review E, 2016, 94, 032316.	2.1	53
59	Breakdown of interdependent directed networks. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1138-1143.	7.1	120
60	Universal resilience patterns in complex networks. Nature, 2016, 530, 307-312.	27.8	754
61	Cyber War Game in Temporal Networks. PLoS ONE, 2016, 11, e0148674.	2.5	7
62	Recent Progress on the Resilience of Complex Networks. Energies, 2015, 8, 12187-12210.	3.1	82
63	Percolation of interdependent network of networks. Chaos, Solitons and Fractals, 2015, 72, 4-19.	5.1	65
64	Vulnerability and controllability of networks of networks. Chaos, Solitons and Fractals, 2015, 80, 125-138.	5.1	31
65	Collective Motion in a Network of Self-Propelled Agent Systems. PLoS ONE, 2015, 10, e0144153.	2.5	8
66	Network of Interdependent Networks: Overview of Theory and Applications. Understanding Complex Systems, 2014, , 3-36.	0.6	33
67	Target control of complex networks. Nature Communications, 2014, 5, 5415.	12.8	311
68	From a single network to a network of networks. National Science Review, 2014, 1, 346-356.	9.5	129
69	Vulnerability of network of networks. European Physical Journal: Special Topics, 2014, 223, 2087-2106.	2.6	39
70	Percolation of partially interdependent scale-free networks. Physical Review E, 2013, 87, 052812.	2.1	103
71	Percolation of a general network of networks. Physical Review E, 2013, 88, 062816.	2.1	103
72	Robustness of network of networks under targeted attack. Physical Review E, 2013, 87, 052804.	2.1	167

#	Article	IF	CITATIONS
73	Robustness of a network formed by <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>n</mml:mi></mml:math> interdependent networks with a one-to-one correspondence of dependent nodes. Physical Review E, 2012, 85, 066134.	2.1	132
74	Percolation of partially interdependent networks under targeted attack. Physical Review E, 2012, 85, 016112.	2.1	102
75	Networks formed from interdependent networks. Nature Physics, 2012, 8, 40-48.	16.7	961
76	Robustness of a Network of Networks. Physical Review Letters, 2011, 107, 195701.	7.8	509
77	Robustness of interdependent networks under targeted attack. Physical Review E, 2011, 83, 065101.	2.1	408
78	Evolutionary prisoner's dilemma game in flocks. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 50-56.	2.6	12
79	Evolution of cooperation among mobile agents. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 1615-1622.	2.6	44
80	Study on robust H â^ž filtering in networked environments. International Journal of Automation and Computing, 2011, 8, 465-471.	4.5	1
81	Angle restriction enhances synchronization of self-propelled objects. Physical Review E, 2011, 84, 046115.	2.1	31
82	Enhancing the convergence efficiency of a self-propelled agent system via a weighted model. Physical Review E, 2010, 81, 041918.	2.1	35
83	An Approach to Enhance Convergence Efficiency of Self-propelled Agent System. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2009, , 1261-1269.	0.3	1