Sergey Deyev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4287923/publications.pdf Version: 2024-02-01

94433 144013 4,982 228 37 57 citations h-index g-index papers 236 236 236 4271 docs citations times ranked citing authors all docs

SEDCEN DEVEN

#	Article	IF	CITATIONS
1	Phase I Trial of ^{99m} Tc-(HE) ₃ -G3, a DARPin-Based Probe for Imaging of HER2 Expression in Breast Cancer. Journal of Nuclear Medicine, 2022, 63, 528-535.	5.0	29
2	Direct photoacoustic measurement of silicon nanoparticle degradation promoted by a polymer coating. Chemical Engineering Journal, 2022, 430, 132860.	12.7	14
3	Targeted nuclear medicine. Seek and destroy. Russian Chemical Reviews, 2022, 91, .	6.5	19
4	Genetically encoded BRET-activated photodynamic therapy for the treatment of deep-seated tumors. Light: Science and Applications, 2022, 11, 38.	16.6	26
5	Laser-Ablative Synthesis of Ultrapure Magneto-Plasmonic Core-Satellite Nanocomposites for Biomedical Applications. Nanomaterials, 2022, 12, 649.	4.1	16
6	Epithelial cell adhesion molecule‑targeting designed ankyrin repeat protein‑toxin fusion Ec1‑LoPE exhibits potent cytotoxic action in prostate cancer cells. Oncology Reports, 2022, 47, .	2.6	4
7	Targeting Cancer Cell Tight Junctions Enhances PLGA-Based Photothermal Sensitizers' Performance In Vitro and In Vivo. Pharmaceutics, 2022, 14, 43.	4.5	18
8	Laser ablation of Fe ₂ B target enriched in ¹⁰ B content for boron neutron capture therapy. Laser Physics Letters, 2022, 19, 066002.	1.4	4
9	Artificial Scaffold PolypeptidesAs an Efficient Tool for the Targeted Delivery of Nanostructures In Vitro and In Vivo. , 2022, 14, 54-72.		17
10	3D Models of Cellular Spheroids As a Universal Tool for Studying the Cytotoxic Properties of Anticancer Compounds In Vitro. , 2022, 14, 92-100.		7
11	Photothermal Therapy with HER2-Targeted Silver Nanoparticles Leading to Cancer Remission. Pharmaceutics, 2022, 14, 1013.	4.5	27
12	Laser Synthesized Core-Satellite Fe-Au Nanoparticles for Multimodal In Vivo Imaging and In Vitro Photothermal Therapy. Pharmaceutics, 2022, 14, 994.	4.5	17
13	Macrophage blockade using nature-inspired ferrihydrite for enhanced nanoparticle delivery to tumor. International Journal of Pharmaceutics, 2022, 621, 121795.	5.2	4
14	Cancer cells targeting with genetically engineered constructs based on a pH-dependent membrane insertion peptide and fluorescent protein. Biochemical and Biophysical Research Communications, 2022, 612, 141-146.	2.1	3
15	Laser-ablative aqueous synthesis and characterization of elemental boron nanoparticles for biomedical applications. Scientific Reports, 2022, 12, .	3.3	14
16	Isolation of Circulating Tumor Cells from Seminal Fluid of Patients with Prostate Cancer Using Inertial Microfluidics. Cancers, 2022, 14, 3364.	3.7	10
17	Laser-synthesized TiN nanoparticles for biomedical applications: Evaluation of safety, biodistribution and pharmacokinetics. Materials Science and Engineering C, 2021, 120, 111717.	7.3	44
18	In vivo blockade of mononuclear phagocyte system with solid nanoparticles: Efficiency and affecting factors. Journal of Controlled Release, 2021, 330, 111-118.	9.9	44

#	Article	IF	CITATIONS
19	Barnase encapsulation into submicron porous CaCO ₃ particles: studies of loading and enzyme activity. Journal of Materials Chemistry B, 2021, 9, 8823-8831.	5.8	7
20	Natural and Designed Toxins for Precise Therapy: Modern Approaches in Experimental Oncology. International Journal of Molecular Sciences, 2021, 22, 4975.	4.1	15
21	Comparative Evaluation of Engineered Polypeptide Scaffolds in HER2-Targeting Magnetic Nanocarrier Delivery. ACS Omega, 2021, 6, 16000-16008.	3.5	23
22	PLGA Nanoparticles Decorated with Anti-HER2 Affibody for Targeted Delivery and Photoinduced Cell Death. Molecules, 2021, 26, 3955.	3.8	25
23	Influence of the Position and Composition of Radiometals and Radioiodine Labels on Imaging of Epcam Expression in Prostate Cancer Model Using the DARPin Ec1. Cancers, 2021, 13, 3589.	3.7	7
24	Long-Term Fate of Magnetic Particles in Mice: A Comprehensive Study. ACS Nano, 2021, 15, 11341-11357.	14.6	50
25	Imaging-Guided Therapy Simultaneously Targeting HER2 and EpCAM with Trastuzumab and EpCAM-Directed Toxin Provides Additive Effect in Ovarian Cancer Model. Cancers, 2021, 13, 3939.	3.7	8
26	Antigen‧pecific Stimulation and Expansion of CARâ€T Cells Using Membrane Vesicles as Target Cell Surrogates. Small, 2021, 17, e2102643.	10.0	17
27	DARPin_9-29-Targeted Gold Nanorods Selectively Suppress HER2-Positive Tumor Growth in Mice. Cancers, 2021, 13, 5235.	3.7	17
28	Comparison of pharmacokinetics and biodistribution of laser-synthesized plasmonic Au and TiN nanoparticles. Journal of Physics: Conference Series, 2021, 2058, 012004.	0.4	2
29	MIL-53 (Al) metal-organic frameworks as potential drug carriers. Journal of Physics: Conference Series, 2021, 2058, 012015.	0.4	0
30	Novel advanced nanotechnologies for nuclear medicine. Journal of Physics: Conference Series, 2021, 2058, 012035.	0.4	1
31	Barnase*Barstar-guided two-step targeting approach for drug delivery to tumor cells in vivo. Journal of Controlled Release, 2021, 340, 200-208.	9.9	5
32	Photoluminescent Nanomaterials for Medical Biotechnology. Acta Naturae, 2021, 13, 16-31.	1.7	1
33	Photoluminescent Nanomaterials for Medical Biotechnology. Acta Naturae, 2021, 13, 16-31.	1.7	3
34	Barnase-Barstar Pair: Contemporary Application in Cancer Research and Nanotechnology. Molecules, 2021, 26, 6785.	3.8	5
35	Label-free methods of multiparametric surface plasmon resonance and MPQ-cytometry for quantitative real-time measurements of targeted magnetic nanoparticles complexation with living cancer cells. Materials Today Communications, 2021, 29, 102978.	1.9	7
36	Effect of a radiolabel biochemical nature on tumor-targeting properties of EpCAM-binding engineered scaffold protein DARPin Ec1. International Journal of Biological Macromolecules, 2020, 145, 216-225.	7.5	20

#	Article	IF	CITATIONS
37	Dual Targeting of Cancer Cells with DARPin-Based Toxins for Overcoming Tumor Escape. Cancers, 2020, 12, 3014.	3.7	34
38	Radionuclide Molecular Imaging of EpCAM Expression in Triple-Negative Breast Cancer Using the Scaffold Protein DARPin Ec1. Molecules, 2020, 25, 4719.	3.8	11
39	UCNP-based Photoluminescent Nanomedicines for Targeted Imaging and Theranostics of Cancer. Molecules, 2020, 25, 4302.	3.8	16
40	Fast processes of nanoparticle blood clearance: Comprehensive study. Journal of Controlled Release, 2020, 326, 181-191.	9.9	46
41	Dual Regioselective Targeting the Same Receptor in Nanoparticle-Mediated Combination Immuno/Chemotherapy for Enhanced Image-Guided Cancer Treatment. ACS Nano, 2020, 14, 12781-12795.	14.6	43
42	Doxycycline Sensitive Two-Promoter Integrator Based on the TET-ON 3G Transactivator. Molecular Biology, 2020, 54, 269-273.	1.3	1
43	Chemotherapeutic Agents Sensitize Resistant Cancer Cells to the DR5-Specific Variant DR5-B More Efficiently Than to TRAIL by Modulating the Surface Expression of Death and Decoy Receptors. Cancers, 2020, 12, 1129.	3.7	9
44	Feasibility of Imaging EpCAM Expression in Ovarian Cancer Using Radiolabeled DARPin Ec1. International Journal of Molecular Sciences, 2020, 21, 3310.	4.1	17
45	Multifunctional Complexes Based on Photoluminescent Upconversion Nanoparticles for Theranostics of the HER2-Positive Tumors. Doklady Biochemistry and Biophysics, 2020, 491, 73-76.	0.9	7
46	RNA Sequencing-Based Identification of Ganglioside GD2-Positive Cancer Phenotype. Biomedicines, 2020, 8, 142.	3.2	25
47	Enhancement of the blood-circulation time and performance of nanomedicines via the forced clearance of erythrocytes. Nature Biomedical Engineering, 2020, 4, 717-731.	22.5	103
48	Laser-Ablative Synthesis of Isotope-Enriched Samarium Oxide Nanoparticles for Nuclear Nanomedicine. Nanomaterials, 2020, 10, 69.	4.1	13
49	Near-Infrared Molecular Imaging of Glioblastoma by Miltuximab®-IRDye800CW as a Potential Tool for Fluorescence-Guided Surgery. Cancers, 2020, 12, 984.	3.7	12
50	Plants with genetically encoded autoluminescence. Nature Biotechnology, 2020, 38, 944-946.	17.5	89
51	Delivery of Barnase to Cells in Liposomes Functionalized by Her2-Specific DARPin Module. Russian Journal of Bioorganic Chemistry, 2020, 46, 1156-1161.	1.0	16
52	On the prevention of kidney uptake of radiolabeled DARPins. EJNMMI Research, 2020, 10, 7.	2.5	16
53	Near-infrared activated cyanine dyes as agents for photothermal therapy and diagnosis of tumors. Acta Naturae, 2020, 12, 102-113.	1.7	25
54	Fourier nanotransducers for phase-sensitive plasmonic biosensing. , 2020, , .		0

#	Article	IF	CITATIONS
55	Colloidal samarium oxide nanoparticles prepared by femtosecond laser ablation and fragmentation for nuclear nanomedicine. , 2020, , .		1
56	Growth Retardation of Poorly Transfectable Tumor by Multiple Injections of Plasmids Encoding PE40 Based Targeted Toxin Complexed with Polyethylenimine. Current Gene Therapy, 2020, 20, 289-296.	2.0	1
57	Plasmonic silver nanoparticles for theranostics of HER2-positive cancer. , 2020, , .		0
58	Acoustic detection of nanoparticle structural stability in physiological media after their laser irradiation. , 2020, , .		0
59	Optimal composition and position of histidine-containing tags improves biodistribution of 99mTc-labeled DARPin G3. Scientific Reports, 2019, 9, 9405.	3.3	34
60	Resolution and contrast enhancement of laser-scanning multiphoton microscopy using thulium-doped upconversion nanoparticles. Nano Research, 2019, 12, 2933-2940.	10.4	17
61	Multimerization through Pegylation Improves Pharmacokinetic Properties of scFv Fragments of GD2-Specific Antibodies. Molecules, 2019, 24, 3835.	3.8	22
62	DARPin_9-29-Targeted Mini Gold Nanorods Specifically Eliminate HER2-Overexpressing Cancer Cells. ACS Applied Materials & Interfaces, 2019, 11, 34645-34651.	8.0	18
63	New Frontiers in Diagnosis and Therapy of Circulating Tumor Markers in Cerebrospinal Fluid In Vitro and In Vivo. Cells, 2019, 8, 1195.	4.1	23
64	Nanoparticle-based drug delivery <i>via</i> RBC-hitchhiking for the inhibition of lung metastases growth. Nanoscale, 2019, 11, 1636-1646.	5.6	126
65	Indirect Radioiodination of DARPin G3 Using N-succinimidyl-Para-Iodobenzoate Improves the Contrast of HER2 Molecular Imaging. International Journal of Molecular Sciences, 2019, 20, 3047.	4.1	18
66	Penetration Efficiency of Antitumor Agents in Ovarian Cancer Spheroids: The Case of Recombinant Targeted Toxin DARPin-LoPE and the Chemotherapy Drug, Doxorubicin. Pharmaceutics, 2019, 11, 219.	4.5	21
67	HER2-Specific Targeted Toxin DARPin-LoPE: Immunogenicity and Antitumor Effect on Intraperitoneal Ovarian Cancer Xenograft Model. International Journal of Molecular Sciences, 2019, 20, 2399.	4.1	25
68	Phaseâ€Responsive Fourier Nanotransducers for Probing 2D Materials and Functional Interfaces. Advanced Functional Materials, 2019, 29, 1902692.	14.9	18
69	Preclinical Study of Biofunctional Polymer-Coated Upconversion Nanoparticles. Toxicological Sciences, 2019, 170, 123-132.	3.1	27
70	Comparison of tumor‑targeting properties of directly and indirectly radioiodinated designed ankyrin repeat protein (DARPin) G3 variants for molecular imaging of HER2. International Journal of Oncology, 2019, 54, 1209-1220.	3.3	19
71	Nuclear nanomedicine using Si nanoparticles as safe and effective carriers of 188Re radionuclide for cancer therapy. Scientific Reports, 2019, 9, 2017.	3.3	53
72	Removal of the Translocation Domain and the Furin Cleavage Site Decreases the Relative Hepatotoxicity of the Targeted Antitumor Toxins. Doklady Biochemistry and Biophysics, 2019, 489, 370-372.	0.9	0

#	Article	IF	CITATIONS
73	Self-assembling nanoparticles biofunctionalized with magnetite-binding protein for the targeted delivery to HER2/neu overexpressing cancer cells. Journal of Magnetism and Magnetic Materials, 2019, 469, 450-455.	2.3	25
74	3D in vitro models of tumors expressing EGFR family receptors: a potent tool for studying receptor biology and targeted drug development. Drug Discovery Today, 2019, 24, 99-111.	6.4	11
75	Magnetometry based method for investigation of nanoparticle clearance from circulation in a liver perfusion model. Nanotechnology, 2019, 30, 105101.	2.6	14
76	Comparative Evaluation of Two DARPin Variants: Effect of Affinity, Size, and Label on Tumor Targeting Properties. Molecular Pharmaceutics, 2019, 16, 995-1008.	4.6	35
77	"Green―Synthesis of Cytotoxic Silver Nanoparticles Based on Secondary Metabolites of Lavandula Angustifolia Mill Acta Naturae, 2019, 11, 47-53.	1.7	14
78	DARPins: Promising Scaffolds for Theranostics. Acta Naturae, 2019, 11, 42-53.	1.7	44
79	A Highly Specific Substrate for NanoLUC Luciferase Furimazine Is Toxic in vitro and in vivo. Russian Journal of Bioorganic Chemistry, 2018, 44, 225-228.	1.0	20
80	Versatile Platform for Nanoparticle Surface Bioengineering Based on SiO ₂ -Binding Peptide and Proteinaceous Barnase*Barstar Interface. ACS Applied Materials & Interfaces, 2018, 10, 17437-17447.	8.0	40
81	Bifunctional Recombinant Protein Agent Based on Pseudomonas Exotoxin A Fragment for Targeted Therapy of HER2-Positive Tumors. , 2018, , 563-572.		0
82	Efficiency of Bioluminescence Resonance Energy Transfer in the NanoLuc-miniSOG-Furimazine System. Russian Journal of Bioorganic Chemistry, 2018, 44, 755-758.	1.0	2
83	Upconversion nanoparticles: on the way from diagnostics to theranostics. EPJ Web of Conferences, 2018, 190, 03001.	0.3	0
84	Death Mechanism of Breast Adenocarcinoma Cells Caused by BRET-Induced Cytotoxicity of miniSOG Depends on the Intracellular Localization of the NanoLuc–miniSOG Fusion Protein. Doklady Biochemistry and Biophysics, 2018, 482, 288-291.	0.9	5
85	Data on characterization of magnetic nanoparticles stabilized with fusion protein of Barstar and C-term part of Mms6. Data in Brief, 2018, 21, 1659-1663.	1.0	2
86	The Application of Recombinant Phototoxins 4D5scFv-miniSOG and DARPin-miniSOG to Study the HER2 Receptor Internalization. Doklady Biochemistry and Biophysics, 2018, 482, 245-248.	0.9	2
87	Radioactive (⁹⁰ Y) upconversion nanoparticles conjugated with recombinant targeted toxin for synergistic nanotheranostics of cancer. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9690-9695.	7.1	58
88	Phototoxicity of flavoprotein miniSOG induced by bioluminescence resonance energy transfer in genetically encoded system NanoLuc-miniSOG is comparable with its LED-excited phototoxicity. Journal of Photochemistry and Photobiology B: Biology, 2018, 188, 107-115.	3.8	27
89	Synthesis of Magnetic Nanoparticles Stabilized by Magnetite-Binding Protein for Targeted Delivery to Cancer Cells. Doklady Biochemistry and Biophysics, 2018, 481, 198-200.	0.9	17
90	Selective staining and eradication of cancer cells by protein-carrying DARPin-functionalized liposomes. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 130, 296-305.	4.3	17

#	Article	IF	CITATIONS
91	Comparative Evaluation of Radioiodine and Technetium-Labeled DARPin 9_29 for Radionuclide Molecular Imaging of HER2 Expression in Malignant Tumors. Contrast Media and Molecular Imaging, 2018, 2018, 1-11.	0.8	30
92	The Cause of ErbB2 Receptor Resistance to Downregulation. Russian Journal of Bioorganic Chemistry, 2018, 44, 279-288.	1.0	1
93	Disassembling a cancer puzzle: Cell junctions and plasma membrane as targets for anticancer therapy. Journal of Controlled Release, 2018, 286, 125-136.	9.9	19
94	Neuroblastoma Origin and Therapeutic Targets for Immunotherapy. Journal of Immunology Research, 2018, 2018, 1-25.	2.2	100
95	A Novel Approach to Anticancer Therapy: Molecular Modules Based on the Barnase:Barstar Pair for Targeted Delivery of HSP70 to Tumor Cells. Acta Naturae, 2018, 10, 85-91.	1.7	7
96	The Mechanism of Fluorescence Quenching of Protein Photosensitizers Based on miniSOG During Internalization of the HER2 Receptor. Acta Naturae, 2018, 10, 87-94.	1.7	5
97	Abstract B066: Unique roles of group I PAK isoforms in regulating MPNST cell viability. , 2018, , .		0
98	A Novel Approach to Anticancer Therapy: Molecular Modules Based on the Barnase:Barstar Pair for Targeted Delivery of HSP70 to Tumor Cells. Acta Naturae, 2018, 10, 85-91.	1.7	3
99	The Mechanism of Fluorescence Quenching of Protein Photosensitizers Based on miniSOG During Internalization of the HER2 Receptor. Acta Naturae, 2018, 10, 87-94.	1.7	3
100	Medium throughput biochemical compound screening identifies novel agents for pharmacotherapy of neurofibromatosis type 1. Biochimie, 2017, 135, 1-5.	2.6	7
101	Targeting group I p21-activated kinases to control malignant peripheral nerve sheath tumor growth and metastasis. Oncogene, 2017, 36, 5421-5431.	5.9	28
102	Data of self-made Taq DNA polymerase prepared for screening purposes. Data in Brief, 2017, 11, 546-551.	1.0	1
103	Deep-penetrating photodynamic therapy with KillerRed mediated by upconversion nanoparticles. Acta Biomaterialia, 2017, 51, 461-470.	8.3	77
104	The effect of trypan blue treatment on autofluorescence of fixed cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 917-925.	1.5	30
105	Lentiviral gene delivery to plasmolipin-expressing cells using Mus caroli endogenous retrovirus envelope protein. Biochimie, 2017, 142, 226-233.	2.6	3
106	Cytotoxicity of targeted HER2-specific phototoxins based on flavoprotein miniSOG is determined by the rate of their internalization. Doklady Biochemistry and Biophysics, 2017, 475, 256-258.	0.9	6
107	Flavoprotein miniSOG BRET-induced cytotoxicity depends on its intracellular localization. Doklady Biochemistry and Biophysics, 2017, 474, 228-230.	0.9	15
108	CID fragmentation, H/D exchange and supermetallization of Barnase-Barstar complex. Scientific Reports, 2017, 7, 6176.	3.3	5

#	Article	IF	CITATIONS
109	Synthesis, Characterization, and Selective Delivery of DARPin–Gold Nanoparticle Conjugates to Cancer Cells. Bioconjugate Chemistry, 2017, 28, 2569-2574.	3.6	37
110	Targeted Bifunctional Proteins and Hybrid Nanoconstructs for Cancer Diagnostics and Therapies. Molecular Biology, 2017, 51, 788-803.	1.3	13
111	Applications of genetically encoded photosensitizer miniSOG: from correlative light electron microscopy to immunophotosensitizing. Journal of Biophotonics, 2017, 10, 338-352.	2.3	52
112	Bifunctional Toxin DARP-LoPE Based on the Her2-Specific Innovative Module of a Non-Immunoglobulin Scaffold as a Promising Agent for Theranostics. Molecular Biology, 2017, 51, 865-873.	1.3	18
113	HER2-specific recombinant immunotoxin 4D5scFv-PE40 passes through retrograde trafficking route and forces cells to enter apoptosis. Oncotarget, 2017, 8, 22048-22058.	1.8	22
114	Ultraviolet phototoxicity of upconversion nanoparticles illuminated with near-infrared light. Nanoscale, 2017, 9, 14921-14928.	5.6	28
115	Spheroids of HER2-Positive Breast Adenocarcinoma for Studying Anticancer Immunotoxins In Vitro. Acta Naturae, 2017, 9, 38-43.	1.7	5
116	The Effect of the Targeted Recombinant Toxin DARPin-PE40 on the Dynamics of HER2-Positive Tumor Growth. Acta Naturae, 2017, 9, 103-107.	1.7	0
117	Synthesis and Characterization of Hybrid Core-Shell Fe3O4/SiO2 Nanoparticles for Biomedical Applications. Acta Naturae, 2017, 9, 58-65.	1.7	8
118	Upconversion nanoparticles and their hybrid assemblies for biomedical applications. Russian Chemical Reviews, 2016, 85, 1277-1296.	6.5	20
119	Development and investigation of recombinant immunotoxin protein 4D5scFv-mCherry-PE(40). Doklady Biochemistry and Biophysics, 2016, 471, 450-453.	0.9	0
120	Cytotoxic effects of upconversion nanoparticles in primary hippocampal cultures. RSC Advances, 2016, 6, 33656-33665.	3.6	18
121	MPQ-cytometry: a magnetism-based method for quantification of nanoparticle–cell interactions. Nanoscale, 2016, 8, 12764-12772.	5.6	48
122	Development of a recombinant immunotoxin for the immunotherapy of autoreactive lymphocytes expressing MOG-specific BCRs. Biotechnology Letters, 2016, 38, 1173-1180.	2.2	5
123	Anti-HER2 phototoxin based on flavoprotein miniSOG causes the oxidative stress and necrosis of HER2-positive cancer cells. Moscow University Biological Sciences Bulletin, 2016, 71, 14-18.	0.7	1
124	Construction of the plasmid-free strain for human growth hormone production. Biochimie, 2016, 128-129, 148-153.	2.6	0
125	Lectin-based nanoagents for specific cell labelling and optical visualization. , 2016, , .		0
126	Structural features of Cas2 from <i>Thermococcus onnurineus</i> in CRISPR as system type IV. Protein Science, 2016, 25, 1890-1897.	7.6	10

8

#	Article	IF	CITATIONS
127	Synthesis of magnetic silica nanomarkers with controlled physicochemical properties. Doklady Biochemistry and Biophysics, 2016, 470, 335-337.	0.9	0
128	Riboflavin photoactivation by upconversion nanoparticles for cancer treatment. Scientific Reports, 2016, 6, 35103.	3.3	92
129	Study of Fibronectin Type III-Like Domains Role in Activation of gp130 Receptor. Bulletin of Experimental Biology and Medicine, 2016, 161, 72-74.	0.8	0
130	Recombinant targeted toxin based on HER2-specific DARPin possesses a strong selective cytotoxic effect in vitro and a potent antitumor activity in vivo. Journal of Controlled Release, 2016, 233, 48-56.	9.9	57
131	Flavoprotein miniSOG Cytotoxisity Can Be Induced By Bioluminescence Resonance Energy Transfer. Acta Naturae, 2016, 8, 118-123.	1.7	21
132	Bioreactor-Based Tumor Tissue Engineering. Acta Naturae, 2016, 8, 44-58.	1.7	10
133	Flavoprotein miniSOG Cytotoxisity Can Be Induced By Bioluminescence Resonance Energy Transfer. Acta Naturae, 2016, 8, 118-123.	1.7	11
134	Man-made antibodies and immunoconjugates with desired properties: function optimization using structural engineering. Russian Chemical Reviews, 2015, 84, 1-26.	6.5	61
135	Far-red fluorescent cell line for preclinical study of HER2-targeted agents. Doklady Biochemistry and Biophysics, 2015, 465, 410-412.	0.9	1
136	Complexes of magnetic nanoparticles and scFv antibodies for targeting and visualizing cancer cells. , 2015, , .		3
137	Cytotoxicity and non-specific cellular uptake of bare and surface-modified upconversion nanoparticles in human skin cells. Nano Research, 2015, 8, 1546-1562.	10.4	75
138	Mechanism of the cytotoxic action of immunophototoxin 4D5scFV-miniSOG on HER2/neu-positive cancer cells. Doklady Biochemistry and Biophysics, 2015, 460, 16-19.	0.9	5
139	A comprehensive study of interactions between lectins and glycoproteins for the development of effective theranostic nanoagents. Doklady Biochemistry and Biophysics, 2015, 464, 315-318.	0.9	14
140	Chemical Polysialylation of Recombinant Human Proteins. Methods in Molecular Biology, 2015, 1321, 389-404.	0.9	11
141	A new anticancer toxin based on HER2/neu-specific DARPin and photoactive flavoprotein miniSOG. Biochimie, 2015, 118, 116-122.	2.6	49
142	Submicron polyacrolein particles in situ embedded with upconversion nanoparticles for bioassay. Nanoscale, 2015, 7, 1709-1717.	5.6	33
143	A novel far-red fluorescent xenograft model of ovarian carcinoma for preclinical evaluation of HER2-targeted immunotoxins. Oncotarget, 2015, 6, 30919-30928.	1.8	32
144	Internalization and Recycling of the HER2 Receptor on Human Breast Adenocarcinoma Cells Treated with Targeted Phototoxic Protein DARPinminiSOG. Acta Naturae, 2015, 7, 126-132.	1.7	28

#	Article	IF	CITATIONS
145	Recombinant Immunotoxin 4D5scFv-PE40 for Targeted Therapy of HER2-Positive Tumors. Acta Naturae, 2015, 7, 93-96.	1.7	6
146	Specific Depletion of Myelin-Reactive B Cells via BCR-Targeting. Acta Naturae, 2015, 7, 74-9.	1.7	1
147	Internalization and Recycling of the HER2 Receptor on Human Breast Adenocarcinoma Cells Treated with Targeted Phototoxic Protein DARPinminiSOG. Acta Naturae, 2015, 7, 126-32.	1.7	14
148	Recombinant Immunotoxin 4D5scFv-PE40 for Targeted Therapy of HER2-Positive Tumors. Acta Naturae, 2015, 7, 93-6.	1.7	2
149	Novel recombinant anti-HER2/neu immunotoxin: Design and antitumor efficiency. Biochemistry (Moscow), 2014, 79, 1376-1381.	1.5	21
150	Highly specific hybrid protein DARPin-mCherry for fluorescent visualization of cells overexpressing tumor marker HER2/neu. Biochemistry (Moscow), 2014, 79, 1391-1396.	1.5	20
151	Biocomputing based on particle disassembly. Nature Nanotechnology, 2014, 9, 716-722.	31.5	132
152	Somatostatin and its 2A Receptor in Dorsal Root Ganglia and Dorsal Horn of Mouse and Human: Expression, Trafficking and Possible Role in Pain. Molecular Pain, 2014, 10, 1744-8069-10-12.	2.1	39
153	Specific Visualization of Tumor Cells Using Upconversion Nanophosphors. Acta Naturae, 2014, 6, 48-53.	1.7	12
154	Specific visualization of tumor cells using upconversion nanophosphors. Acta Naturae, 2014, 6, 48-53.	1.7	6
155	Excessive Labeling Technique Provides a Highly Sensitive Fluorescent Probe for Real-time Monitoring of Biodegradation of Biopolymer Pharmaceuticals in vivo. Acta Naturae, 2014, 6, 54-9.	1.7	9
156	Polyethyleneimine-coated magnetic nanoparticles for cell labeling and modification. Doklady Biochemistry and Biophysics, 2013, 452, 245-247.	0.9	2
157	Immunocytochemical visualization of P185HER2 receptor using antibodies fused with dibarnase and conjugate of barstar with colloidal gold. Molecular Biology, 2013, 47, 701-711.	1.3	1
158	Biodegradation of Magnetic Nanoparticles in Mouse Liver From Combined Analysis of Mössbauer and Magnetization Data. IEEE Transactions on Magnetics, 2013, 49, 394-397.	2.1	26
159	Biodegradation of Magnetic Nanoparticles in Rat Brain Studied by Mössbauer Spectroscopy. IEEE Transactions on Magnetics, 2013, 49, 436-439.	2.1	9
160	Denaturation-Resistant Bifunctional Colloidal Superstructures Assembled via the Proteinaceous Barnase–Barstar Interface. ACS Nano, 2013, 7, 950-961.	14.6	40
161	A modular design of lowâ€background bioassays based on a highâ€affinity molecular pair barstar:barnase. Proteomics, 2013, 13, 1437-1443.	2.2	12
162	Luminescent Nanomaterials for Molecular-Specific Cellular Imaging. , 2013, , 563-596.		2

#	Article	IF	CITATIONS
163	Feasibility study of the optical imaging of a breast cancer lesion labeled with upconversion nanoparticle biocomplexes. Journal of Biomedical Optics, 2013, 18, 076004.	2.6	84
164	Genetically Encoded Immunophotosensitizer 4D5scFv-miniSOG is a Highly Selective Agent for Targeted Photokilling of Tumor Cells in <i> Vitro</i> . Theranostics, 2013, 3, 831-840.	10.0	79
165	Study of Nature of Paramagnetic Doublet in Mössbauer Spectra of Mice Liver Using External Magnetic Field. Solid State Phenomena, 2012, 190, 729-732.	0.3	2
166	Self-assembly of magnetic and fluorescent colloidal constructs based on protein-protein interactions. Doklady Biochemistry and Biophysics, 2012, 445, 210-212.	0.9	1
167	Application of fusion protein 4D5 scFv-dibarnase:barstar–gold complex for studying P185HER2 receptor distribution in human cancer cells. Biochimie, 2012, 94, 1833-1836.	2.6	19
168	Passive and active targeting of quantum dots for wholeâ€body fluorescence imaging of breast cancer xenografts. Journal of Biophotonics, 2012, 5, 860-867.	2.3	32
169	Self-Assembling Complexes of Quantum Dots and scFv Antibodies for Cancer Cell Targeting and Imaging. PLoS ONE, 2012, 7, e48248.	2.5	32
170	ERBB oncogene proteins as targets for monoclonal antibodies. Biochemistry (Moscow), 2012, 77, 227-245.	1.5	47
171	Pharmacological Characterization of a Recombinant, Fluorescent Somatostatin Receptor Agonist. Bioconjugate Chemistry, 2011, 22, 1768-1775.	3.6	12
172	Expression of humanized anti-Her2/neu single-chain IgG1-like antibody in mammary glands of transgenic mice. Biochimie, 2011, 93, 628-630.	2.6	8
173	Submicron polymer particles containing fluorescent semiconductor nanocrystals CdSe/ZnS for bioassays. Nanomedicine, 2011, 6, 195-209.	3.3	37
174	Barstar:barnase — a versatile platform for colloidal diamond bioconjugation. Journal of Materials Chemistry, 2011, 21, 65-68.	6.7	34
175	Bioanalytical fluorescent reagents based on polyacrolein-containing particles labeled with semiconductor CdSe/ZnS nanocrystals. Doklady Biochemistry and Biophysics, 2011, 439, 151-154.	0.9	1
176	Fluorescent nanodiamond bioconjugates on the base of barnase:barstar module. Doklady Biochemistry and Biophysics, 2011, 440, 231-233.	0.9	3
177	Antitumor activity and toxicity of anti-HER2 immunoRNase scFv 4D5-dibarnase in mice bearing human breast cancer xenografts. Investigational New Drugs, 2011, 29, 22-32.	2.6	52
178	Interfacing nanodiamonds for single molecular optical-biomedical imaging. , 2011, , .		0
179	Design of Targeted B Cell Killing Agents. PLoS ONE, 2011, 6, e20991.	2.5	41
180	Quantum Dots for Molecular Diagnostics of Tumors. Acta Naturae, 2011, 3, 29-47.	1.7	26

#	Article	IF	CITATIONS
181	Imaging of human ovarian cancer SKOV-3 cells by quantum dot bioconjugates. Doklady Biochemistry and Biophysics, 2010, 430, 41-44.	0.9	8
182	Anti-EGFR-miniantibody-barnase immunoconjugate is highly toxic for human tumor cells. Doklady Biochemistry and Biophysics, 2010, 434, 270-273.	0.9	0
183	Force spectroscopy of barnase–barstar single molecule interaction. Journal of Molecular Recognition, 2010, 23, 583-588.	2.1	12
184	Magnetic Nanoparticle Degradation in vivo Studied by Mol̀^ssbauer Spectroscopy. , 2010, , .		18
185	Protein-assisted self-assembly of multifunctional nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5827-5832.	7.1	96
186	Whole-body imaging of HER2/neu-overexpressing tumors using scFv-antibody conjugated quantum dots. , 2010, , .		1
187	Targeting cancer cells by using an antireceptor antibody-photosensitizer fusion protein. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9221-9225.	7.1	135
188	Fusion of barnase to antiferritin antibody F11 VH domain results in a partially folded functionally active protein. Biochemistry (Moscow), 2009, 74, 672-680.	1.5	2
189	Fluorescent immunolabeling of cancer cells by quantum dots and antibody scFv fragment. Journal of Biomedical Optics, 2009, 14, 021004.	2.6	31
190	Modern Technologies for Creating Synthetic Antibodies for Clinical Application. Acta Naturae, 2009, 1, 32-50.	1.7	66
191	Modern Technologies for Creating Synthetic Antibodies for Clinical application. Acta Naturae, 2009, 1, 32-50.	1.7	41
192	Multivalency: the hallmark of antibodies used for optimization of tumor targeting by design. BioEssays, 2008, 30, 904-918.	2.5	104
193	Expression of anti-tumor recombinant IgG- and IgE-like genes in eukaryotic cells. Russian Journal of Genetics, 2008, 44, 890-894.	0.6	3
194	Spin Label Method Reveals Barnase-Barstar Interaction: A Temperature and Viscosity Dependence Approach. Journal of Biomolecular Structure and Dynamics, 2008, 25, 525-534.	3.5	10
195	Barnase as a New Therapeutic Agent Triggering Apoptosis in Human Cancer Cells. PLoS ONE, 2008, 3, e2434.	2.5	74
196	Expression of single-chain antibody-barstar fusion in plants. Biochimie, 2007, 89, 31-38.	2.6	34
197	Dynamic spin label study of the barstar-barnase complex. Biochemistry (Moscow), 2007, 72, 994-1002.	1.5	2
198	Visualization of cancer cells by means of the fluorescent EGFP-barnase protein. Doklady Biochemistry and Biophysics, 2007, 414, 120-123.	0.9	19

#	Article	IF	CITATIONS
199	A new vector for controllable expression of an anti-HER2/neu mini-antibody-barnase fusion protein in HEK 293T cells. Gene, 2006, 366, 97-103.	2.2	36
200	Eukaryotic expression vectors and immunoconjugates for cancer therapy. Biochemistry (Moscow), 2006, 71, 597-606.	1.5	4
201	Production of recombinant antitumor antibodies by HEK-293 cells. Doklady Biochemistry and Biophysics, 2006, 406, 44-46.	0.9	1
202	Folding and Stability of Chimeric Immunofusion VL-Barstar. Biochemistry (Moscow), 2004, 69, 939-948.	1.5	3
203	Expression of the chimeric IgE gene in cell culture and in various mouse tissues. Biochimie, 2004, 86, 939-943.	2.6	7
204	Fusion of the antiferritin antibody VL domain to barnase results in enhanced solubility and altered pH stability. Protein Engineering, Design and Selection, 2004, 17, 85-93.	2.1	31
205	Biosynthesis of the scFv Antibody to Human Ferritin in Plant and Bacterial Producers. Molecular Biology, 2003, 37, 780-786.	1.3	5
206	Thermostable Alkaline Phosphatase of Bacterium Meiothermus ruber: Gene Cloning, Expression in Escherichia coli, and Biochemical Characterization of the Recombinant Protein. Molecular Biology, 2003, 37, 841-848.	1.3	0
207	Cloning of an alkaline phosphatase gene from the moderately thermophilic bacterium Meiothermus ruber and characterization of the recombinant enzyme. Molecular Genetics and Genomics, 2003, 270, 87-93.	2.1	12
208	Design of multivalent complexes using the barnase·barstar module. Nature Biotechnology, 2003, 21, 1486-1492.	17.5	177
209	Partially structured state of the functional VH domain of the mouse anti-ferritin antibody F11. FEBS Letters, 2002, 518, 177-182.	2.8	7
210	The quantitative characteristics of efficiency of ballistic transfection of chimeric antibody genes. Immunology Letters, 2000, 74, 197-200.	2.5	2
211	Antiferritin Single-Chain Fv Fragment Is a Functional Protein with Properties of a Partially Structured State: Comparison with the Completely Folded VLDomainâ€. Biochemistry, 2000, 39, 8047-8057.	2.5	30
212	A new phagemid vector for positive selection of recombinants based on a conditionally lethal barnase gene. FEBS Letters, 1999, 452, 351-354.	2.8	16
213	Ribonuclease-charged vector for facile direct cloning with positive selection. Molecular Genetics and Genomics, 1998, 259, 379-382.	2.4	16
214	Antiferritin single-chain antibody: a functional protein with incomplete folding?. FEBS Letters, 1998, 441, 458-462.	2.8	19
215	A plasmid vector with positive selection and directional cloning based on a conditionally lethal gene. Gene, 1996, 169, 131-132.	2.2	27
216	Recombinant barnase as a label in ELISA. FEBS Letters, 1996, 388, 99-102.	2.8	5

#	Article	IF	CITATIONS
217	Group-selective immunoassay. Immunology Letters, 1994, 41, 235-239.	2.5	2
218	Expression of immunoglobulin genes tandem in eukaryotic cells under the control of T7 bacteriophage RNA polymerase. Applied Biochemistry and Biotechnology, 1994, 47, 143-155.	2.9	5
219	Production of recombinant antibodies in lymphoid and non-lymphoid cells. FEBS Letters, 1993, 330, 111-113.	2.8	10
220	Allelic variants of rearranged immunoglobulin heavy and light chain genes in hybridoma PTF-02 and parent myeloma. Genetica, 1991, 85, 45-51.	1.1	3
221	Immunoglobulin heavy chain genes in the hybridoma PTF-02. Folia Biologica, 1989, 35, 398-404.	0.6	2
222	Investigation of Immunoglobulin Light and Heavy Chain Genes Responsible for the Synthesis of Antibodies in Hybridoma PTF.02. , 1988, , 251-257.		2
223	Reciprocal recombination products of VK-JKjoining reactions in human lymphoid cell lines. Nucleic Acids Research, 1987, 15, 1-14.	14.5	69
224	Purification of mRNA for immunoglobulin κ-chains from myeloma and hybridoma cells using hybridization to immobilized complementary DNA. Immunology Letters, 1984, 7, 315-319.	2.5	1
225	Two-step modification of aspartate aminotransferase with 1,5-difluoro-2,4-dinitrobenzene Cross-link localization. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1978, 534, 358-367.	1.7	7
226	Location of exposed and buried cysteine residues in the polypeptide chain of aspartate aminotransferase. FEBS Letters, 1973, 35, 322-326.	2.8	11
227	Book review on "Immunology" (2021) authored by academician of the Russian Academy of Sciences R.M. Khaitov. Russian Journal of Allergy, 0, , .	0.2	0
228	Effect of Surface Modification of Multifunctional Nanocomposite Drug Delivery Carriers with DARPin on Their Biodistribution <i>In Vitro</i> and <i>In Vivo</i> . ACS Applied Bio Materials, 0, , .	4.6	6