Leonardo Palmisano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4287535/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A solar photothermocatalytic approach for the CO2 conversion: Investigation of different synergisms on CoO-CuO/brookite TiO2-CeO2 catalysts. Chemical Engineering Journal, 2022, 428, 131249.	6.6	39
2	Electron and Energy Transfer Mechanisms: The Double Nature of TiO2 Heterogeneous Photocatalysis. Topics in Current Chemistry, 2022, 380, 2.	3.0	9
3	Selective photoelectrocatalytic oxidation of glycerol by nanotube, nanobelt and nanosponge structured TiO2 on Ti plates. Journal of Environmental Chemical Engineering, 2022, 10, 107210.	3.3	14
4	Selective Photocatalytic Oxidation of Glycerol and 3-Pyridinemethanol by Nanotube/Nanowire-Structured TiO2 Powders Obtained by Breakdown Anodization. Frontiers in Chemistry, 2022, 10, .	1.8	1
5	Boosting High Added-Value Chemicals Formation By Means Of Photoelectrocatalysis. Journal of Photocatalysis, 2022, 3, .	0.4	1
6	C3N4 Impregnated with Porphyrins as Heterogeneous Photocatalysts for the Selective Oxidation of 5-Hydroxymethyl-2-Furfural Under Solar Irradiation. Topics in Catalysis, 2021, 64, 758-771.	1.3	15
7	Features and application of coupled cold plasma and photocatalysis processes for decontamination of water. Chemosphere, 2021, 262, 128336.	4.2	15
8	Reduced grey brookite for noble metal free photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2021, 9, 1168-1179.	5.2	26
9	Selective oxidation of aromatic alcohols in the presence of C3N4 photocatalysts derived from the polycondensation of melamine, cyanuric and barbituric acids. Research on Chemical Intermediates, 2021, 47, 131-156.	1.3	16
10	Synthesis and characterization of titanium dioxide and titanium dioxide–based materials. , 2021, , 87-165.		3
11	Fundamentals of photocatalysis: The role of the photocatalysts in heterogeneous photo-assisted reactions. , 2021, , 3-9.		4
12	(Photo)electrocatalytic Versus Heterogeneous Photocatalytic Carbon Dioxide Reduction. ChemPhotoChem, 2021, 5, 767-791.	1.5	21
13	Tuning the selectivity to aldehyde via pH regulation in the photocatalytic oxidation of 4-methoxybenzyl alcohol and vanillyl alcohol by TiO2 catalysts. Journal of Environmental Chemical Engineering, 2021, 9, 105308.	3.3	16
14	Heterogeneous photocatalytic materials for sustainable formation of high-value chemicals in green solvents. Materials Today Sustainability, 2021, 13, 100071.	1.9	12
15	(Photo)electrocatalytic Versus Heterogeneous Photocatalytic Carbon Dioxide Reduction. ChemPhotoChem, 2021, 5, 766-766.	1.5	0
16	Aqueous selective photocatalytic oxidation of salicyl alcohol by TiO2 catalysts: Influence of some physico-chemical features. Catalysis Today, 2021, 380, 16-24.	2.2	5
17	Partial photoelectrocatalytic oxidation of 3-pyridinemethanol by Pt, Au and Pd loaded TiO2 nanotubes on Ti plate. Catalysis Today, 2021, 380, 248-258.	2.2	12
			_

18 Properties of titanium dioxide. , 2021, , 13-66.

#	Article	IF	CITATIONS
19	Fine chemistry by TiO2 heterogeneous photocatalysis. , 2021, , 609-635.		1
20	Coupling of membrane and photocatalytic technologies for selective formation of high added value chemicals. Catalysis Today, 2020, 340, 128-144.	2.2	13
21	Photocatalytic and photothermocatalytic applications of cerium oxide-based materials. , 2020, , 109-167.		17
22	Photoelectrocatalytic oxidation of 3-pyridinemethanol to 3-pyridinemethanal and vitamin B ₃ by TiO ₂ nanotubes. Catalysis Science and Technology, 2020, 10, 124-137.	2.1	18
23	Exploring the Photothermo-Catalytic Performance of Brookite TiO2-CeO2 Composites. Catalysts, 2020, 10, 765.	1.6	34
24	Preface to the Special Issue on "Heterogeneous Photocatalysts: From Fundamentals to Innovative Applications― Topics in Catalysis, 2020, 63, 955-955.	1.3	0
25	Pickering Emulsions of Fluorinated TiO ₂ : A New Route for Intensification of Photocatalytic Degradation of Nitrobenzene. Langmuir, 2020, 36, 13545-13554.	1.6	23
26	Surface and Electronic Features of Fluorinated TiO ₂ and Their Influence on the Photocatalytic Degradation of 1-Methylnaphthalene. Journal of Physical Chemistry C, 2020, 124, 11456-11468.	1.5	28
27	Photocatalytic Partial Oxidation of Tyrosol: Improving the Selectivity Towards Hydroxytyrosol by Surface Fluorination of TiO2. Topics in Catalysis, 2020, 63, 1350-1360.	1.3	7
28	Role of Hydroxyl, Superoxide, and Nitrate Radicals on the Fate of Bromide Ions in Photocatalytic TiO ₂ Suspensions. ACS Catalysis, 2020, 10, 7922-7931.	5.5	71
29	Carbon nitride as photocatalyst in organic selective transformations. , 2020, , 437-455.		2
30	Highly stable defective TiO2-x with tuned exposed facets induced by fluorine: Impact of surface and bulk properties on selective UV/visible alcohol photo-oxidation. Applied Surface Science, 2020, 510, 145419.	3.1	28
31	Enhanced Solar Light Photocatalytic Activity of Ag Doped TiO2–Ag3PO4 Composites. Nanomaterials, 2020, 10, 795.	1.9	41
32	Semiconductor mixed oxides as innovative materials for the photocatalytic removal of organic pollutants. , 2020, , 385-430.		1
33	A Dialysis Photocatalytic Reactor for the Green Production of Vanillin. Catalysts, 2020, 10, 326.	1.6	8
34	Formation of High Added Value Chemicals by Photocatalytic Treatment of Biomass. Mini-Reviews in Organic Chemistry, 2020, 17, 884-901.	0.6	17
35	Photocatalytic Partial Oxidation of 5-hydroxymethyl-2-furfural Under UV and Natural Solar Irradiation in Aqueous Suspension of K Containing C3N4. Journal of Photocatalysis, 2020, 1, 16-29.	0.4	1
36	Catalytic and Photothermo-catalytic Applications of TiO2-CoOx Composites. Journal of Photocatalysis, 2020, 1, 3-15.	0.4	9

#	Article	IF	CITATIONS
37	Water Depollution by Advanced Oxidation Technologies. Nanotechnology in the Life Sciences, 2020, , 501-537.	0.4	1
38	2020 Roadmap on two-dimensional nanomaterials for environmental catalysis. Chinese Chemical Letters, 2019, 30, 2065-2088.	4.8	90
39	Photocatalytic Degradation Enhancement in Pickering Emulsions Stabilized by Solid Particles of Bare TiO ₂ . Langmuir, 2019, 35, 2129-2136.	1.6	41
40	Three-Dimensional Calibration for Routine Analyses of Bromide and Nitrate Ions as Indicators of Groundwater Quality in Coastal Territories. International Journal of Environmental Research and Public Health, 2019, 16, 1419.	1.2	3
41	Photocatalytic ozonation for a sustainable aquaculture: A long-term test in a seawater aquarium. Applied Catalysis B: Environmental, 2019, 253, 69-76.	10.8	23
42	Efficient H2 production by photocatalytic water splitting under UV or solar light over variously modified TiO2-based catalysts. International Journal of Hydrogen Energy, 2019, 44, 14796-14807.	3.8	38
43	Effect of Substituents on Partial Photocatalytic Oxidation of Aromatic Alcohols Assisted by Polymeric C ₃ N ₄ . ChemCatChem, 2019, 11, 2713-2724.	1.8	27
44	Sequential biological and photocatalysis based treatments for shipboard slop purification: A pilot plant investigation. Chemical Engineering Research and Design, 2019, 125, 288-296.	2.7	11
45	Preparation of Catalysts and Photocatalysts Used for Similar Processes. , 2019, , 25-56.		10
46	Photocatalytic and Catalytic Reactions in Gas–Solid and in Liquid–Solid Systems. , 2019, , 153-176.		3
47	Photoelectrochemical and EPR features of polymeric C3N4 and O-modified C3N4 employed for selective photocatalytic oxidation of alcohols to aldehydes. Catalysis Today, 2019, 328, 21-28.	2.2	47
48	Photoactivity of shape-controlled TiO2 in gas-solid regime under solar irradiation. Catalysis Today, 2019, 328, 118-124.	2.2	5
49	Effects of weathering on the performance of self-cleaning photocatalytic paints. Cement and Concrete Composites, 2019, 96, 77-86.	4.6	16
50	Influence of Surfaceâ€Related Phenomena on Mechanism, Selectivity, and Conversion of TiO ₂ â€Induced Photocatalytic Reactions. ChemSusChem, 2019, 12, 589-602.	3.6	33
51	Heterogeneous photocatalysis: guidelines on experimental setup, catalyst characterization, interpretation, and assessment of reactivity. Catalysis Reviews - Science and Engineering, 2019, 61, 163-213.	5.7	49
52	Photocatalytic H2 production over inverse opal TiO2 catalysts. Catalysis Today, 2019, 321-322, 113-119.	2.2	29
53	ZrO2 Based materials as photocatalysts for 2-propanol oxidation by using UV and solar light irradiation and tests for CO2 reduction. Catalysis Today, 2018, 313, 100-105.	2.2	42
54	Selective photocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxaldehyde by polymeric carbon nitride-hydrogen peroxide adduct. Journal of Catalysis, 2018, 359, 212-222.	3.1	68

#	Article	IF	CITATIONS
55	Influence of fluorine on the synthesis of anatase TiO ₂ for photocatalytic partial oxidation: are exposed facets the main actors?. Catalysis Science and Technology, 2018, 8, 1606-1620.	2.1	25
56	Photocatalytic partial oxidation of limonene to 1,2 limonene oxide. Chemical Communications, 2018, 54, 1008-1011.	2.2	35
57	Polymers of Limonene Oxide and Carbon Dioxide: Polycarbonates of the Solar Economy. ACS Omega, 2018, 3, 4884-4890.	1.6	78
58	Selective photocatalytic oxidation of 5-hydroxymethyl-2-furfural in aqueous suspension of polymeric carbon nitride and its adduct with H2O2 in a solar pilot plant. Catalysis Today, 2018, 315, 138-148.	2.2	47
59	Polymeric carbon nitride (C3N4) as heterogeneous photocatalyst for selective oxidation of alcohols to aldehydes. Catalysis Today, 2018, 315, 126-137.	2.2	60
60	The influence of Al doping on the photocatalytic activity of nanostructured ZnO: The role of adsorbed water. Applied Surface Science, 2018, 445, 376-382.	3.1	81
61	Visible light photocatalytic activity of macro-mesoporous TiO 2 -CeO 2 inverse opals. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 352, 25-34.	2.0	60
62	Selective photocatalytic oxidation of aromatic alcohols in water by using P-doped g-C3N4. Applied Catalysis B: Environmental, 2018, 220, 222-233.	10.8	232
63	Photocatalytic CO <inf>2</inf> Valorization by Using Ti <inf>O2</inf> , ZrO2 and Graphitic Based Semiconductors. , 2018, , .		0
64	An Investigation into the Stability of Graphitic C ₃ N ₄ as a Photocatalyst for CO ₂ Reduction. Journal of Physical Chemistry C, 2018, 122, 28727-28738.	1.5	56
65	Step-by-Step Growth of HKUST-1 on Functionalized TiO2 Surface: An Efficient Material for CO2 Capture and Solar Photoreduction. Catalysts, 2018, 8, 353.	1.6	52
66	Photocatalytic Solar Light H ₂ Production by Aqueous Glucose Reforming. European Journal of Inorganic Chemistry, 2018, 2018, 4522-4532.	1.0	34
67	Heterogeneous Photocatalysis for Selective Formation of High-Value-Added Molecules: Some Chemical and Engineering Aspects. ACS Catalysis, 2018, 8, 11191-11225.	5.5	166
68	Determination of the crystallinity of TiO2 photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 367, 312-320.	2.0	53
69	CO ₂ to Liquid Fuels: Photocatalytic Conversion in a Continuous Membrane Reactor. ACS Sustainable Chemistry and Engineering, 2018, 6, 8743-8753.	3.2	54
70	Heterogeneous Photocatalysis. , 2018, , 1-43.		15
71	PMRs Utilizing Non–Pressure-Driven Membrane Techniques. , 2018, , 129-171.		0
72	The Existence of Nitrate Radicals in Irradiated TiO ₂ Aqueous Suspensions in the Presence of Nitrate Ions. Angewandte Chemie - International Edition, 2018, 57, 10702-10706.	7.2	22

#	Article	IF	CITATIONS
73	Green synthesis of bromine by TiO2 heterogeneous photocatalysis and/or ozone: A kinetic study. Journal of Catalysis, 2018, 366, 167-175.	3.1	13
74	Reactions in the Presence of Irradiated Semiconductors: Are They Simply Photocatalytic?. Mini-Reviews in Organic Chemistry, 2018, 15, 157-164.	0.6	23
75	Effect of the addition of different doping agents on visible light activity of porous TiO2 photocatalysts. Molecular Catalysis, 2018, 455, 108-120.	1.0	42
76	Process intensification in a photocatalytic membrane reactor: Analysis of the techniques to integrate reaction and separation. Chemical Engineering Journal, 2017, 310, 352-359.	6.6	29
77	Keggin heteropolyacids supported on TiO2 used in gas-solid (photo)catalytic propene hydration and in liquid-solid photocatalytic glycerol dehydration. Catalysis Today, 2017, 281, 60-70.	2.2	30
78	Influence of Adsorbed Water on the Activation Energy of Model Photocatalytic Reactions. Journal of Physical Chemistry C, 2017, 121, 2258-2267.	1.5	26
79	Tuning the photocatalytic activity of bismuth wolframate: towards selective oxidations for the biorefinery driven by solar-light. Chemical Communications, 2017, 53, 7521-7524.	2.2	19
80	Improved (Photo)catalytic Propene Hydration in a Gas/Solid System by Using Heteropolyacid/Oxide Composites: Electron Paramagnetic Resonance, Acidity, and Role of Water. European Journal of Inorganic Chemistry, 2017, 2017, 1900-1907.	1.0	7
81	Comparison between preparative methodologies of nanostructured carbon nitride and their use as selective photocatalysts in water suspension. Research on Chemical Intermediates, 2017, 43, 5153-5168.	1.3	42
82	Electron transfer in ZnO–Fe ₂ O ₃ aqueous slurry systems and its effects on visible light photocatalytic activity. Catalysis Science and Technology, 2017, 7, 4041-4047.	2.1	37
83	Absolute crystallinity and photocatalytic activity of brookite TiO2 samples. Applied Catalysis B: Environmental, 2017, 201, 150-158.	10.8	80
84	Guidelines for the assessment of the rate law of slurry photocatalytic reactions. Catalysis Today, 2017, 281, 221-230.	2.2	24
85	Selective photocatalytic oxidation of 5-hydroxymethyl-2-furfural to 2,5-furandicarboxyaldehyde in aqueous suspension of g-C3N4. Applied Catalysis B: Environmental, 2017, 204, 430-439.	10.8	156
86	Photoactivity under visible light of metal loaded TiO 2 catalysts prepared by low frequency ultrasound treatment. Catalysis Today, 2017, 284, 92-99.	2.2	33
87	3.5 Photocatalytic Processes in Membrane Reactors. , 2017, , 101-138.		12
88	Au/TiO2-CeO2 Catalysts for Photocatalytic Water Splitting and VOCs Oxidation Reactions. Catalysts, 2016, 6, 121.	1.6	63
89	Inorganic materials acting as heterogeneous photocatalysts and catalysts in the same reactions. Dalton Transactions, 2016, 45, 11596-11605.	1.6	12
90	CO2 conversion in a photocatalytic continuous membrane reactor. RSC Advances, 2016, 6, 67418-67427.	1.7	34

#	Article	IF	CITATIONS
91	Cu-substituted lanthanum ferrite perovskites: Preparation, characterization and photocatalytic activity in gas-solid regime under simulated solar light irradiation. Journal of Alloys and Compounds, 2016, 682, 686-694.	2.8	61
92	Supported H3PW12O40 for 2-propanol (photo-assisted) catalytic dehydration in gas-solid regime: The role of the support and of the pseudo-liquid phase in the (photo)activity. Applied Catalysis B: Environmental, 2016, 189, 252-265.	10.8	31
93	Elemental Bromine Production by TiO ₂ Photocatalysis and/or Ozonation. Angewandte Chemie - International Edition, 2016, 55, 10391-10395.	7.2	32
94	Combination of advanced oxidation processes and active carbons adsorption for the treatment of simulated saline wastewater. Separation and Purification Technology, 2016, 171, 101-111.	3.9	38
95	A comparison between photocatalytic and catalytic oxidation of 2-Propanol over Au/TiO 2 –CeO 2 catalysts. Journal of Molecular Catalysis A, 2016, 415, 56-64.	4.8	43
96	Photocatalytic formation of H2 and value-added chemicals in aqueous glucose (Pt)-TiO2 suspension. International Journal of Hydrogen Energy, 2016, 41, 5934-5947.	3.8	90
97	Heteropolyacid-Based Heterogeneous Photocatalysts for Environmental Application. Green Chemistry and Sustainable Technology, 2016, , 63-107.	0.4	3
98	Photochemical and photocatalytic isomerization of trans -caffeic acid and cyclization of cis -caffeic acid to esculetin. Applied Catalysis B: Environmental, 2016, 182, 347-355.	10.8	30
99	A reaction engineering approach to kinetic analysis of photocatalytic reactions in slurry systems. Catalysis Today, 2016, 259, 87-96.	2.2	41
100	Alcohol-Selective Oxidation in Water under Mild Conditions via a Novel Approach to Hybrid Composite Photocatalysts. ChemistryOpen, 2015, 4, 779-785.	0.9	24
101	Photoreduction of Carbon Dioxide to Formic Acid in Aqueous Suspension: A Comparison between Phthalocyanine/TiO2 and Porphyrin/TiO2 Catalysed Processes. Molecules, 2015, 20, 396-415.	1.7	51
102	Photocatalytic ozonation: Maximization of the reaction rate and control of undesired by-products. Applied Catalysis B: Environmental, 2015, 178, 37-43.	10.8	36
103	Photocatalytic oxidation of trans-ferulic acid to vanillin on TiO2 and WO3-loaded TiO2 catalysts. Catalysis Today, 2015, 252, 195-200.	2.2	48
104	Photocatalytic conversion of glucose in aqueous suspensions of heteropolyacid–TiO ₂ composites. RSC Advances, 2015, 5, 59037-59047.	1.7	46
105	High activity of brookite TiO2 nanoparticles in the photocatalytic abatement of ammonia in water. Catalysis Today, 2015, 252, 184-189.	2.2	43
106	Heterogeneous Photocatalysis and Photoelectrocatalysis: From Unselective Abatement of Noxious Species to Selective Production of High-Value Chemicals. Journal of Physical Chemistry Letters, 2015, 6, 1968-1981.	2.1	99
107	Photocatalytic activity of binary and ternary SnO2–ZnO–ZnWO4 nanocomposites. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 309, 47-54.	2.0	36
108	Unexpectedly ambivalent O2 role in the autocatalytic photooxidation of 2-methoxybenzyl alcohol in water. Journal of Molecular Catalysis A, 2015, 403, 37-42.	4.8	9

#	Article	IF	CITATIONS
109	Improvement of Membrane Performances to Enhance the Yield of Vanillin in a Pervaporation Reactor. Membranes, 2014, 4, 96-112.	1.4	19
110	Heteropolyacidâ€Based Materials as Heterogeneous Photocatalysts. European Journal of Inorganic Chemistry, 2014, 2014, 21-35.	1.0	115
111	Photocatalytic green synthesis of piperonal in aqueous TiO2 suspension. Applied Catalysis B: Environmental, 2014, 144, 607-613.	10.8	46
112	Photocatalytic CO2 reduction in gas–solid regime in the presence of H2O by using GaP/TiO2 composite as photocatalyst under simulated solar light. Catalysis Communications, 2014, 53, 38-41.	1.6	59
113	Characterization and photoactivity of coupled ZnO–ZnWO4 catalysts prepared by a sol–gel method. Applied Catalysis B: Environmental, 2014, 154-155, 379-385.	10.8	49
114	Influence of crystallinity and OH surface density on the photocatalytic activity of TiO2 powders. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 273, 59-67.	2.0	90
115	Photocatalysis in dimethyl carbonate green solvent: degradation and partial oxidation of phenanthrene on supported TiO ₂ . RSC Advances, 2014, 4, 40859-40864.	1.7	32
116	Sol–gel synthesis and photocatalytic activity of ZnO–SnO2 nanocomposites. Journal of Molecular Catalysis A, 2014, 390, 133-141.	4.8	147
117	Turning lipophilic phthalocyanines/TiO2 composites into efficient photocatalysts for the conversion of CO2 into formic acid under UV–vis light irradiation. Applied Catalysis A: General, 2014, 481, 169-172.	2.2	44
118	Keggin heteropolyacid H3PW12O40 supported on different oxides for catalytic and catalytic photo-assisted propene hydration. Physical Chemistry Chemical Physics, 2013, 15, 13329.	1.3	69
119	Preparation and Photoactivity of Nanocrystalline TiO2 Powders Obtained by Thermohydrolysis of TiOSO4. Catalysis Letters, 2013, 143, 844-852.	1.4	13
120	A pervaporation photocatalytic reactor for the green synthesis of vanillin. Chemical Engineering Journal, 2013, 224, 136-143.	6.6	57
121	Photoelectrocatalytic selective oxidation of 4-methoxybenzyl alcohol in water by TiO2 supported on titanium anodes. Applied Catalysis B: Environmental, 2013, 132-133, 535-542.	10.8	35
122	Brookite, the Least Known TiO2 Photocatalyst. Catalysts, 2013, 3, 36-73.	1.6	474
123	N-TiO2 Photocatalysts highly active under visible irradiation for NOX abatement and 2-propanol oxidation. Catalysis Today, 2013, 206, 19-25.	2.2	43
124	Photocatalytic Selective Oxidation of 5-(Hydroxymethyl)-2-furaldehyde to 2,5-Furandicarbaldehyde in Water by Using Anatase, Rutile, and Brookite TiO ₂ Nanoparticles. ACS Sustainable Chemistry and Engineering, 2013, 1, 456-461.	3.2	96
125	Nature of Interactions at the Interface of Two Water-Saturated Commercial TiO ₂ Polymorphs. Journal of Physical Chemistry C, 2013, 117, 5269-5273.	1.5	17
126	Photocatalytic CO2 Reduction in Gas-Solid Regime in the Presence of Bare, SiO2 Supported or Cu-Loaded TiO2 Samples. Current Organic Chemistry, 2013, 17, 2440-2448.	0.9	36

8

#	Article	IF	CITATIONS
127	Visible-light-induced oxidation of trans-ferulic acid by TiO2 photocatalysis. Journal of Catalysis, 2012, 295, 254-260.	3.1	44
128	Selective oxidation of phenol and benzoic acid in water via home-prepared TiO2 photocatalysts: Distribution of hydroxylation products. Applied Catalysis A: General, 2012, 441-442, 79-89.	2.2	35
129	Extruded expanded polystyrene sheets coated by TiO2 as new photocatalytic materials for foodstuffs packaging. Applied Surface Science, 2012, 261, 783-788.	3.1	17
130	Enhancing selectivity in photocatalytic formation of p-anisaldehyde in aqueous suspension under solar light irradiation via TiO2 N-doping. New Journal of Chemistry, 2012, 36, 1762.	1.4	28
131	A survey of photocatalytic materials for environmental remediation. Journal of Hazardous Materials, 2012, 211-212, 3-29.	6.5	772
132	Comparison between catalytic and catalytic photo-assisted propene hydration by using supported heteropolyacid. Applied Catalysis A: General, 2012, 421-422, 70-78.	2.2	23
133	Synthesis of vanillin in water by TiO2 photocatalysis. Applied Catalysis B: Environmental, 2012, 111-112, 555-561.	10.8	79
134	Effect of titanium dioxide crystalline structure on the photocatalytic production of hydrogen. Photochemical and Photobiological Sciences, 2011, 10, 355-360.	1.6	68
135	Preparation and photoactivity of samarium loaded anatase, brookite and rutile catalysts. Applied Catalysis B: Environmental, 2011, 104, 291-299.	10.8	48
136	Titania Photocatalysts for Selective Oxidations in Water. ChemSusChem, 2011, 4, 1431-1438.	3.6	100
137	Photocatalytic process intensification by coupling with pervaporation. Catalysis Today, 2011, 161, 209-213.	2.2	37
138	Glossary of terms used in photocatalysis and radiation catalysis (IUPAC Recommendations 2011). Pure and Applied Chemistry, 2011, 83, 931-1014.	0.9	333
139	Photocatalytic activity of TiO2/SiO2 systems. Journal of Hazardous Materials, 2010, 174, 707-713.	6.5	111
140	Influence of activated carbon in TiO2 and ZnO mediated photo-assisted degradation of 2-propanol in gas–solid regime. Applied Catalysis B: Environmental, 2010, 99, 170-180.	10.8	66
141	Partial photocatalytic oxidation of glycerol in TiO2 water suspensions. Catalysis Today, 2010, 151, 21-28.	2.2	97
142	Kinetics of 4-Methoxybenzyl Alcohol Oxidation in Aqueous Solution in a Fixed Bed Photocatalytic Reactor. Industrial & Engineering Chemistry Research, 2010, 49, 6699-6708.	1.8	29
143	Advances in selective conversions by heterogeneous photocatalysis. Chemical Communications, 2010, 46, 7074.	2.2	344
144	TiO2 photocatalysts prepared by thermohydrolysis of TiCl4 in aqueous solutions. Studies in Surface Science and Catalysis, 2010, 175, 225-228.	1.5	6

#	Article	IF	CITATIONS
145	Determination of Photoadsorption Capacity of Polychrystalline TiO2 Catalyst in Irradiated Slurry. Advances in Chemical Engineering, 2009, 36, 1-35.	0.5	20
146	A quantitative method of photoadsorption determination for irradiated catalyst in liquid–solid system. Catalysis Today, 2009, 143, 189-194.	2.2	10
147	Comparison of the photocatalytic degradation of 2-propanol in gas–solid and liquid–solid systems by using TiO2–LnPc2 hybrid powders. Catalysis Today, 2009, 143, 203-210.	2.2	24
148	Preparation, characterization and photocatalytic activity of TiO2 impregnated with the heteropolyacid H3PW12O40: Photo-assisted degradation of 2-propanol in gas–solid regime. Applied Catalysis B: Environmental, 2009, 90, 497-506.	10.8	32
149	Highly Active Photocatalytic TiO ₂ Powders Obtained by Thermohydrolysis of TiCl ₄ in Water. Journal of Physical Chemistry C, 2009, 113, 15166-15174.	1.5	159
150	Photocatalytic membrane reactors: case studies and perspectives. Asia-Pacific Journal of Chemical Engineering, 2009, 4, 380-384.	0.8	15
151	Preparation of N-doped TiO2: characterization and photocatalytic performance under UV and visible light. Physical Chemistry Chemical Physics, 2009, 11, 4084.	1.3	79
152	Selective photocatalytic oxidation of 4-substituted aromatic alcohols in water with rutile TiO2 prepared at room temperature. Green Chemistry, 2009, 11, 510.	4.6	167
153	Home-prepared anatase, rutile, and brookite TiO2 for selective photocatalytic oxidation of 4-methoxybenzyl alcohol in water: reactivity and ATR-FTIR study. Photochemical and Photobiological Sciences, 2009, 8, 663-669.	1.6	62
154	Environmentally Friendly Photocatalytic Oxidation of Aromatic Alcohol to Aldehyde in Aqueous Suspension of Brookite TiO2. Catalysis Letters, 2008, 126, 58-62.	1.4	89
155	Oxidation of Aromatic Alcohols in Irradiated Aqueous Suspensions of Commercial and Homeâ€Prepared Rutile TiO ₂ : A Selectivity Study. Chemistry - A European Journal, 2008, 14, 4640-4646.	1.7	122
156	Inorganic gels as precursors of TiO2 photocatalysts prepared by low temperature microwave or thermal treatment. Applied Catalysis B: Environmental, 2008, 84, 742-748.	10.8	46
157	Photocatalytic oxidation of aromatic alcohols to aldehydes in aqueous suspension of home-prepared titanium dioxide. Applied Catalysis A: General, 2008, 349, 182-188.	2.2	79
158	Photocatalytic oxidation of aromatic alcohols to aldehydes in aqueous suspension of home prepared titanium dioxide. Applied Catalysis A: General, 2008, 349, 189-197.	2.2	74
159	Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317, 366-376.	2.3	259
160	Nanostructured Rutile TiO ₂ for Selective Photocatalytic Oxidation of Aromatic Alcohols to Aldehydes in Water. Journal of the American Chemical Society, 2008, 130, 1568-1569.	6.6	430
161	Selective Photocatalytic Oxidation of 4-Methoxybenzyl Alcohol to p-Anisaldehyde in Organic-Free Water in a Continuous Annular Fixed Bed Reactor. International Journal of Chemical Reactor Engineering, 2007, 5, .	0.6	13
162	Photocatalytic Degradation of 4-Nitrophenol in Aqueous Suspension by Using Polycrystalline TiO2Impregnated with Lanthanide Double-Decker Phthalocyanine Complexes. Journal of Physical Chemistry C, 2007, 111, 6581-6588.	1.5	85

#	Article	IF	CITATIONS
163	Photocatalysis: a promising route for 21st century organic chemistry. Chemical Communications, 2007, , 3425.	2.2	613
164	Photocatalytic Selective Oxidation of 4-Methoxybenzyl Alcohol to Aldehyde in Aqueous Suspension of Home-Prepared Titanium Dioxide Catalyst. Advanced Synthesis and Catalysis, 2007, 349, 964-970.	2.1	180
165	Photocatalytic oxidation of nitrobenzene and phenylamine: Pathways and kinetics. AICHE Journal, 2007, 53, 961-968.	1.8	31
166	Selectivity of hydroxyl radical in the partial oxidation of aromatic compounds in heterogeneous photocatalysis. Catalysis Today, 2007, 122, 118-127.	2.2	122
167	Photodegradation of pharmaceutical drugs in aqueous TiO2 suspensions: Mechanism and kinetics. Catalysis Today, 2007, 129, 9-15.	2.2	62
168	Photocatalytic oxidation mechanism of benzonitrile in aqueous suspensions of titanium dioxide. Catalysis Today, 2007, 129, 16-21.	2.2	15
169	Photocatalytic behaviour of metal-loaded TiO2 aqueous dispersions and films. Chemical Physics, 2007, 339, 94-103.	0.9	83
170	Efficient degradation of 4-nitrophenol by using functionalized porphyrin-TiO2 photocatalysts under visible irradiation. Applied Catalysis B: Environmental, 2007, 76, 218-226.	10.8	134
171	Preparation and photoactivity of nanostructured anatase, rutile and brookite TiO2 thin films. Chemical Communications, 2006, , 4943.	2.2	120
172	Influence of the substituent on selective photocatalytic oxidation of aromatic compounds in aqueous TiO2 suspensions. Chemical Communications, 2006, , 1012.	2.2	81
173	Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor. Catalysis Today, 2006, 118, 205-213.	2.2	238
174	The combination of heterogeneous photocatalysis with chemical and physical operations: A tool for improving the photoprocess performance. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2006, 7, 127-144.	5.6	385
175	Sunlight-induced reactions of some heterocyclic bases with ethers in the presence of TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 171, 237-242.	2.0	48
176	Degradation of lincomycin in aqueous medium: Coupling of solar photocatalysis and membrane separation. Solar Energy, 2005, 79, 402-408.	2.9	111
177	Oxidation of oxalate ion in aqueous suspensions of TiO2 by photocatalysis and ozonation. Catalysis Today, 2005, 107-108, 612-618.	2.2	72
178	Preparation and photoactivity of nanostructured TiO2 particles obtained by hydrolysis of TiCl4. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 265, 23-31.	2.3	57
179	TRMC, XPS, and EPR Characterizations of Polycrystalline TiO2 Porphyrin Impregnated Powders and Their Catalytic Activity for 4-Nitrophenol Photodegradation in Aqueous Suspension. Journal of Physical Chemistry B, 2005, 109, 12347-12352.	1.2	87
180	Photocatalytic degradation of dyes by using a membrane reactor. Chemical Engineering and Processing: Process Intensification, 2004, 43, 1103-1114.	1.8	199

#	Article	IF	CITATIONS
181	Preparation, Characterization, and Photoactivity of Polycrystalline Nanostructured TiO2Catalysts. Journal of Physical Chemistry B, 2004, 108, 3303-3310.	1.2	155
182	Mixed oxide/sulfide systems for photocatalysis. Research on Chemical Intermediates, 2003, 29, 467-475.	1.3	11
183	Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with functionalized Cu(II)–porphyrin or Cu(II)–phthalocyanine. Journal of Catalysis, 2003, 217, 334-342.	3.1	205
184	Heterogeneous photocatalytic degradation of nitrophenols. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 155, 207-214.	2.0	196
185	Photocatalytic oxidation of toluene on irradiated TiO2: comparison of degradation performance in humidified air, in water and in water containing a zwitterionic surfactant. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 160, 105-114.	2.0	156
186	Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 samples impregnated with Cu(II)-phthalocyanine. Applied Catalysis B: Environmental, 2002, 38, 309-319.	10.8	83
187	Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catalysis Today, 2002, 75, 87-93.	2.2	286
188	Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification. Journal of Membrane Science, 2002, 206, 399-415.	4.1	268
189	Photocatalytic membrane reactors for degradation of organic pollutants in water. Catalysis Today, 2001, 67, 273-279.	2.2	123
190	Study on a photocatalytic membrane reactor for water purification. Catalysis Today, 2000, 55, 71-78.	2.2	230
191	Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst: mechanistic aspects and FT-IR investigation. Applied Catalysis B: Environmental, 1999, 20, 15-27.	10.8	266
192	Influence of platinum on catalytic activity of polycrystalline WO3 employed for phenol photodegradation in aqueous suspension. Solar Energy Materials and Solar Cells, 1998, 51, 203-219.	3.0	77
193	Photocatalytic Oxidation of Cyanides in Aqueous Titanium Dioxide Suspensions. Journal of Catalysis, 1997, 166, 272-283.	3.1	136
194	ZrO2î—,SiO2 mixed oxides: surface aspects, photophysical properties and photoreactivity for 4-nitrophenol oxidation in aqueous phase. Journal of Molecular Catalysis A, 1996, 109, 239-248.	4.8	31
195	Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts. Research on Chemical Intermediates, 1994, 20, 815-823.	1.3	151
196	Photocatalytic degradaton of phenol in aqueous polycrystalline TiO2 dispersions: the influence of Fe3+, Fe2+ and Ag+ on the reaction rate. Journal of Photochemistry and Photobiology A: Chemistry, 1991, 56, 113-123.	2.0	150
197	A structural investigation of titanium dioxide photocatalysts. Journal of Solid State Chemistry, 1991, 92, 178-190.	1.4	974
198	Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion. The Journal of Physical Chemistry, 1990, 94, 829-832.	2.9	411