
David P Connolly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4287373/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Railway-induced ground vibrations – a review of vehicle effects. International Journal of Rail Transportation, 2014, 2, 69-110.	1.8	235
2	Numerical modelling of ground borne vibrations from high speed rail lines on embankments. Soil Dynamics and Earthquake Engineering, 2013, 46, 13-19.	1.9	186
3	Benchmarking railway vibrations – Track, vehicle, ground and building effects. Construction and Building Materials, 2015, 92, 64-81.	3.2	182
4	The growth of railway ground vibration problems — A review. Science of the Total Environment, 2016, 568, 1276-1282.	3.9	178
5	Field testing and analysis of high speed rail vibrations. Soil Dynamics and Earthquake Engineering, 2014, 67, 102-118.	1.9	127
6	Large scale international testing of railway ground vibrations across Europe. Soil Dynamics and Earthquake Engineering, 2015, 71, 1-12.	1.9	103
7	Optimising low acoustic impedance back-fill material wave barrier dimensions to shield structures from ground borne high speed rail vibrations. Construction and Building Materials, 2013, 44, 557-564.	3.2	95
8	Assessment of railway vibrations using an efficient scoping model. Soil Dynamics and Earthquake Engineering, 2014, 58, 37-47.	1.9	74
9	Study of railway track stiffness modification by polyurethane reinforcement of the ballast. Transportation Geotechnics, 2014, 1, 214-224.	2.0	72
10	Railway critical velocity – Analytical prediction and analysis. Transportation Geotechnics, 2016, 6, 84-96.	2.0	62
11	Railway ground vibrations induced by wheel and rail singularÂdefects. Vehicle System Dynamics, 2015, 53, 1500-1519.	2.2	61
12	Scoping prediction of re-radiated ground-borne noise and vibration near high speed rail lines with variable soils. Soil Dynamics and Earthquake Engineering, 2014, 66, 78-88.	1.9	60
13	The effect of railway local irregularities on ground vibration. Transportation Research, Part D: Transport and Environment, 2015, 39, 17-30.	3.2	58
14	Railway cuttings and embankments: Experimental and numerical studies of ground vibration. Science of the Total Environment, 2016, 557-558, 110-122.	3.9	57
15	The influence of train properties on railway ground vibrations. Structure and Infrastructure Engineering, 2016, 12, 517-534.	2.0	54
16	The effect of embankment on high speed rail ground vibrations. International Journal of Rail Transportation, 2016, 4, 229-246.	1.8	47
17	A combined numerical/experimental prediction method for urban railway vibration. Soil Dynamics and Earthquake Engineering, 2017, 97, 377-386.	1.9	47
18	Scoping assessment of building vibration induced by railway traffic. Soil Dynamics and Earthquake Engineering, 2017, 93, 147-161.	1.9	43

DAVID P CONNOLLY

#	Article	IF	CITATIONS
19	Train speed calculation using ground vibrations. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2015, 229, 466-483.	1.3	32
20	Beams on elastic foundations – A review of railway applications and solutions. Transportation Geotechnics, 2022, 33, 100696.	2.0	31
21	Railway subgrade performance during flooding and the post-flooding (recovery) period. Transportation Geotechnics, 2017, 11, 57-68.	2.0	27
22	Modelling the Environmental Effects of Railway Vibrations from Different Types of Rolling Stock: A Numerical Study. Shock and Vibration, 2015, 2015, 1-15.	0.3	25
23	Assessment of railway ground vibration in urban area using in-situ transfer mobilities and simulated vehicle-track interaction. International Journal of Rail Transportation, 2018, 6, 113-130.	1.8	24
24	High speed railway ground dynamics: a multi-model analysis. International Journal of Rail Transportation, 2020, 8, 324-346.	1.8	23
25	Railway subgrade performance after repeated flooding – Large-scale laboratory testing. Transportation Geotechnics, 2020, 23, 100329.	2.0	14
26	A higher order perfectly matched layer formulation for finite-difference time-domain seismic wave modeling. Geophysics, 2015, 80, T1-T16.	1.4	13
27	Influence of non-linear soil properties on railway critical speed. Construction and Building Materials, 2022, 335, 127485.	3.2	9
28	Use of Conventional Site Investigation Parameters to Calculate Critical Velocity of Trains from Rayleigh Waves. Transportation Research Record, 2015, 2476, 32-36.	1.0	7
29	Rail Trackbed and Performance Testing of Stabilised Sub-ballast in Normal and High-speed Environments. Procedia Engineering, 2017, 189, 924-931.	1.2	4
30	Robustness of railway rolling stock speed calculation using ground vibration measurements. MATEC Web of Conferences, 2015, 20, 07002.	0.1	3
31	A Hybrid Numerical-Experimental Assessment of Railway Ground Vibration in Urban Area. , 2018, , .		2
32	Scoping methodology to asses induced vibration by railway traffic in buildings. Procedia Engineering, 2017, 199, 2717-2722.	1.2	1
33	Railway ground vibrations induced by wheel and rail singular defects. , 0, .		1
34	Preface to special issue on †Vibration and noise in rail transportation'. International Journal of Rail Transportation, 2016, 4, 191-192.	1.8	0
35	Dynamic track–ground behaviour on high-speed rail lines. , 2019, , 1-25.		0
36	Scoping assessment of ground and building vibrations due to railway traffic. , 2019, , 283-317.		0