
Carlos Fernandez-Hernando

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4287058/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dyrk1b promotes hepatic lipogenesis by bypassing canonical insulin signaling and directly activating mTORC2 in mice. Journal of Clinical Investigation, 2022, 132, .	8.2	20
2	Brown adipose TRX2 deficiency activates mtDNA-NLRP3 to impair thermogenesis and protect against diet-induced insulin resistance. Journal of Clinical Investigation, 2022, 132, .	8.2	28
3	Targeted Suppression of miRNA-33 Using pHLIP Improves Atherosclerosis Regression. Circulation Research, 2022, 131, 77-90.	4.5	23
4	Fibronectin–Integrin α5 Signaling in Vascular Complications of Type 1 Diabetes. Diabetes, 2022, 71, 2020-2033.	0.6	4
5	MicroRNA regulation of cholesterol metabolism. Annals of the New York Academy of Sciences, 2021, 1495, 55-77.	3.8	15
6	Loss of hepatic miR-33 improves metabolic homeostasis and liver function without altering body weight or atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	26
7	Loss of endothelial glucocorticoid receptor accelerates diabetic nephropathy. Nature Communications, 2021, 12, 2368.	12.8	79
8	MicroRNAs and Circular RNAs in Lipoprotein Metabolism. Current Atherosclerosis Reports, 2021, 23, 33.	4.8	17
9	miRâ€33 in cardiometabolic diseases: lessons learned from novel animal models and approaches. EMBO Molecular Medicine, 2021, 13, e12606.	6.9	17
10	Deficiency of histone lysine methyltransferase SETDB2 in hematopoietic cells promotes vascular inflammation and accelerates atherosclerosis. JCI Insight, 2021, 6, .	5.0	11
11	Ketogenic diet restrains aging-induced exacerbation of coronavirus infection in mice. ELife, 2021, 10, .	6.0	37
12	Increased exosome secretion in neurons aging in vitro by NPC1-mediated endosomal cholesterol buildup. Life Science Alliance, 2021, 4, e202101055.	2.8	12
13	Podocyte Glucocorticoid Receptors Are Essential for Glomerular Endothelial Cell Homeostasis in Diabetes Mellitus. Journal of the American Heart Association, 2021, 10, e019437.	3.7	29
14	Liver injury in COVID-19 and IL-6 trans-signaling-induced endotheliopathy. Journal of Hepatology, 2021, 75, 647-658.	3.7	67
15	Hepatocyte-specific suppression of ANGPTL4 improves obesity-associated diabetes and mitigates atherosclerosis in mice. Journal of Clinical Investigation, 2021, 131, .	8.2	46
16	PCSK9 Activity Is Potentiated Through HDL Binding. Circulation Research, 2021, 129, 1039-1053.	4.5	13
17	MMAB promotes negative feedback control of cholesterol homeostasis. Nature Communications, 2021, 12, 6448.	12.8	10
18	Endothelial HMGB1 (High-Mobility Group Box 1) Regulation of LDL (Low-Density Lipoprotein) Transcytosis: A Novel Mechanism of Intracellular HMGB1 in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 217-219.	2.4	1

#	Article	IF	CITATIONS
19	Desmosterol suppresses macrophage inflammasome activation and protects against vascular inflammation and atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	50
20	Astrocytic lipid metabolism determines susceptibility to diet-induced obesity. Science Advances, 2021, 7, eabj2814.	10.3	11
21	El sistema pHLIP como vehÃculo de microRNA en el riñón. Nefrologia, 2020, 40, 491-498.	0.4	2
22	miR-27b Modulates Insulin Signaling in Hepatocytes by Regulating Insulin Receptor Expression. International Journal of Molecular Sciences, 2020, 21, 8675.	4.1	14
23	ANGPTL4: a multifunctional protein involved in metabolism and vascular homeostasis. Current Opinion in Hematology, 2020, 27, 206-213.	2.5	74
24	Elucidating the mechanisms by which disulfiram protects against obesity and metabolic syndrome. Npj Aging and Mechanisms of Disease, 2020, 6, 8.	4.5	12
25	BMP-9 and LDL crosstalk regulates ALK-1 endocytosis and LDL transcytosis in endothelial cells. Journal of Biological Chemistry, 2020, 295, 18179-18188.	3.4	25
26	Liver X receptors are required for thymic resilience and T cell output. Journal of Experimental Medicine, 2020, 217, .	8.5	20
27	Transport of LDLs into the arterial wall: impact in atherosclerosis. Current Opinion in Lipidology, 2020, 31, 279-285.	2.7	19
28	The pHLIP system as a vehicle for microRNAs in the kidney. Nefrologia, 2020, 40, 491-498.	0.4	1
29	Disulfiram Treatment Normalizes Body Weight in Obese Mice. Cell Metabolism, 2020, 32, 203-214.e4.	16.2	46
30	Cav-1 (Caveolin-1) Deficiency Increases Autophagy in the Endothelium and Attenuates Vascular Inflammation and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1510-1522.	2.4	75
31	High-Density Lipoproteins Are the Main Carriers of PCSK9 in the Circulation. Journal of the American College of Cardiology, 2020, 75, 1495-1497.	2.8	9
32	Smooth Muscle Cell Reprogramming in Aortic Aneurysms. Cell Stem Cell, 2020, 26, 542-557.e11.	11.1	114
33	Endothelial cell–glucocorticoid receptor interactions and regulation of Wnt signaling. JCI Insight, 2020, 5, .	5.0	32
34	Non-coding RNAs in lipid metabolism. Vascular Pharmacology, 2019, 114, 93-102.	2.1	32
35	Elevated Thrombospondin 2 Contributes to Delayed Wound Healing in Diabetes. Diabetes, 2019, 68, 2016-2023.	0.6	23
36	Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nature Metabolism, 2019. 1. 912-926.	11.9	172

#	Article	IF	CITATIONS
37	MicroRNA 7 Impairs Insulin Signaling and Regulates A <i>β</i> Levels through Posttranscriptional Regulation of the Insulin Receptor Substrate 2, Insulin Receptor, Insulin-Degrading Enzyme, and Liver X Receptor Pathway. Molecular and Cellular Biology, 2019, 39, .	2.3	51
38	Gut intraepithelial T cells calibrate metabolism and accelerate cardiovascular disease. Nature, 2019, 566, 115-119.	27.8	128
39	Specific Disruption of Abca1 Targeting Largely Mimics the Effects of miR-33 Knockout on Macrophage Cholesterol Efflux and Atherosclerotic Plaque Development. Circulation Research, 2019, 124, 874-880.	4.5	59
40	ANGPTL4 in Metabolic and Cardiovascular Disease. Trends in Molecular Medicine, 2019, 25, 723-734.	6.7	118
41	Caveolin-1 Regulates Atherogenesis by Attenuating Low-Density Lipoprotein Transcytosis and Vascular Inflammation Independently of Endothelial Nitric Oxide Synthase Activation. Circulation, 2019, 140, 225-239.	1.6	100
42	The Janus-faced role of SR-BI in atherosclerosis. Nature Metabolism, 2019, 1, 586-587.	11.9	6
43	Genetic deficiency or pharmacological inhibition of miR-33 protects from kidney fibrosis. JCI Insight, 2019, 4, .	5.0	46
44	Suppressing miR-21 activity in tumor-associated macrophages promotes an antitumor immune response. Journal of Clinical Investigation, 2019, 129, 5518-5536.	8.2	92
45	Genetic Ablation of miR-33 Increases Food Intake, Enhances Adipose Tissue Expansion, and Promotes Obesity and Insulin Resistance. Cell Reports, 2018, 22, 2133-2145.	6.4	94
46	Skeletal Muscle–Specific Deletion of MKP-1 Reveals a p38 MAPK/JNK/Akt Signaling Node That Regulates Obesity-Induced Insulin Resistance. Diabetes, 2018, 67, 624-635.	0.6	63
47	Brown adipose tissue derived ANGPTL4 controls glucose and lipid metabolism and regulates thermogenesis. Molecular Metabolism, 2018, 11, 59-69.	6.5	80
48	MicroRNA 199a-5p Attenuates Retrograde Transport and Protects against Toxin-Induced Inhibition of Protein Biosynthesis. Molecular and Cellular Biology, 2018, 38, .	2.3	7
49	MicroRNAs in endothelial cell homeostasis and vascular disease. Current Opinion in Hematology, 2018, 25, 227-236.	2.5	72
50	Posttranscriptional regulation of lipid metabolism by non-coding RNAs and RNA binding proteins. Seminars in Cell and Developmental Biology, 2018, 81, 129-140.	5.0	36
51	Absence of ANGPTL4 in adipose tissue improves glucose tolerance and attenuates atherogenesis. JCI Insight, 2018, 3, .	5.0	91
52	Endothelial Transcytosis of Lipoproteins in Atherosclerosis. Frontiers in Cardiovascular Medicine, 2018, 5, 130.	2.4	88
53	Integrin beta3 regulates clonality and fate of smooth muscle-derived atherosclerotic plaque cells. Nature Communications, 2018, 9, 2073.	12.8	135
54	Lacteal junction zippering protects against diet-induced obesity. Science, 2018, 361, 599-603.	12.6	162

#	Article	IF	CITATIONS
55	The Role of MicroRNAs in Environmental Risk Factors, Noise-Induced Hearing Loss, and Mental Stress. Antioxidants and Redox Signaling, 2018, 28, 773-796.	5.4	55
56	Inhibition of profibrotic microRNA-21 affects platelets and their releasate. JCI Insight, 2018, 3, .	5.0	30
57	miR-33 Regulation of Adaptive Fibrotic Response in Cardiac Remodeling. Circulation Research, 2017, 120, 753-755.	4.5	11
58	MicroRNAs and lipid metabolism. Current Opinion in Lipidology, 2017, 28, 273-280.	2.7	156
59	Circulating MicroRNA-122 Is Associated With the Risk of New-Onset Metabolic Syndrome and Type 2 Diabetes. Diabetes, 2017, 66, 347-357.	0.6	199
60	Noncoding RNAs in Cholesterol Metabolism and Atherosclerosis. Cardiac and Vascular Biology, 2017, , 21-37.	0.2	0
61	Hypothalamic Ventromedial Lin28a Enhances Glucose Metabolism in Diet-Induced Obesity. Diabetes, 2017, 66, 2102-2111.	0.6	16
62	Genetic Dissection of the Impact of miR-33a and miR-33b during the Progression of Atherosclerosis. Cell Reports, 2017, 21, 1317-1330.	6.4	96
63	Engineered Microvasculature in PDMS Networks Using Endothelial Cells Derived from Human Induced Pluripotent Stem Cells. Cell Transplantation, 2017, 26, 1365-1379.	2.5	17
64	MiR-33 regulation of stretch-induced intimal hyperplasia in vein grafts. Cardiovascular Research, 2017, 113, 434-436.	3.8	1
65	Macrophage deficiency of miRâ€21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis. EMBO Molecular Medicine, 2017, 9, 1244-1262.	6.9	155
66	Lanosterol Modulates TLR4-Mediated Innate Immune Responses in Macrophages. Cell Reports, 2017, 19, 2743-2755.	6.4	79
67	Engineered microvasculature in PDMS networks using endothelial cells derived from human induced pluripotent stem cells. Cell Transplantation, 2017, , .	2.5	Ο
68	Aktâ€mediated foxo1 inhibition is required for liver regeneration. Hepatology, 2016, 63, 1660-1674.	7.3	55
69	Chronic miRâ€29 antagonism promotes favorable plaque remodeling in atherosclerotic mice. EMBO Molecular Medicine, 2016, 8, 643-653.	6.9	61
70	Micro-RNAs and High-Density Lipoprotein Metabolism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1076-1084.	2.4	45
71	Liver microRNAs: potential mediators and biomarkers for metabolic and cardiovascular disease?. European Heart Journal, 2016, 37, 3260-3266.	2.2	108
72	Ageâ€associated vascular inflammation promotes monocytosis during atherogenesis. Aging Cell, 2016, 15, 766-777.	6.7	41

#	Article	IF	CITATIONS
73	Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nature Communications, 2016, 7, 13516.	12.8	115
74	Preface to: "microRNAs in lipid/energy metabolism and cardiometabolic disease― Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 2039-2040.	2.4	1
75	ANGPTL4 deficiency in haematopoietic cells promotes monocyte expansion and atherosclerosis progression. Nature Communications, 2016, 7, 12313.	12.8	71
76	Truths and controversies concerning the role of miRNAs in atherosclerosis and lipid metabolism. Current Opinion in Lipidology, 2016, 27, 623-629.	2.7	7
77	microRNAs in lipoprotein metabolism and cardiometabolic disorders. Atherosclerosis, 2016, 246, 352-360.	0.8	84
78	SREBP-1c/MicroRNA 33b Genomic Loci Control Adipocyte Differentiation. Molecular and Cellular Biology, 2016, 36, 1180-1193.	2.3	47
79	miRNA regulation of white and brown adipose tissue differentiation and function. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 2104-2110.	2.4	64
80	miRNA regulation of LDL-cholesterol metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 2047-2052.	2.4	35
81	VEGF-Induced Expression of miR-17–92 Cluster in Endothelial Cells Is Mediated by ERK/ELK1 Activation and Regulates Angiogenesis. Circulation Research, 2016, 118, 38-47.	4.5	141
82	miR-27b inhibits LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels in mice. Atherosclerosis, 2015, 243, 499-509.	0.8	53
83	Hematopoietic Akt2 deficiency attenuates the progression of atherosclerosis. FASEB Journal, 2015, 29, 597-610.	0.5	35
84	Genetic Evidence Supports a Major Role for Akt1 in VSMCs During Atherogenesis. Circulation Research, 2015, 116, 1744-1752.	4.5	31
85	Endothelial Glucocorticoid Receptor Suppresses Atherogenesis—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 779-782.	2.4	28
86	p-SMAD2/3 and DICER promote pre-miR-21 processing during pressure overload-associated myocardial remodeling. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1520-1530.	3.8	33
87	Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. Nature Medicine, 2015, 21, 1290-1297.	30.7	214
88	MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nature Medicine, 2015, 21, 1280-1289.	30.7	203
89	Novel Role of miR-33 in Regulating of Mitochondrial Function. Circulation Research, 2015, 117, 225-228.	4.5	14
90	The miR-199/DNM regulatory axis controls receptor-mediated endocytosis. Journal of Cell Science, 2015, 128, 3197-209.	2.0	41

#	Article	IF	CITATIONS
91	microRNA-33 Regulates ApoE Lipidation and Amyloid-Î ² Metabolism in the Brain. Journal of Neuroscience, 2015, 35, 14717-14726.	3.6	104
92	Targeting of Gamma-Glutamyl-Cysteine Ligase by miR-433 Reduces Glutathione Biosynthesis and Promotes TGF-β-Dependent Fibrogenesis. Antioxidants and Redox Signaling, 2015, 23, 1092-1105.	5.4	49
93	Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease. Current Vascular Pharmacology, 2015, 13, 291-304.	1.7	17
94	Improved repair of dermal wounds in mice lacking micro <scp>RNA</scp> â€155. Journal of Cellular and Molecular Medicine, 2014, 18, 1104-1112.	3.6	63
95	Longâ€ŧerm therapeutic silencing of miRâ€33 increases circulating triglyceride levels and hepatic lipid accumulation in mice. EMBO Molecular Medicine, 2014, 6, 1133-1141.	6.9	127
96	Antiatherogenic Properties of High-Density Lipoprotein–Enriched MicroRNAs. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, e13-4.	2.4	3
97	microRNA regulation of lipoprotein metabolism. Current Opinion in Lipidology, 2014, 25, 282-288.	2.7	27
98	Relevance of microRNA in metabolic diseases. Critical Reviews in Clinical Laboratory Sciences, 2014, 51, 305-320.	6.1	41
99	RNA binding protein HuR regulates the expression of ABCA1. Journal of Lipid Research, 2014, 55, 1066-1076.	4.2	33
100	microRNAs and HDL life cycle. Cardiovascular Research, 2014, 103, 414-422.	3.8	47
101	Noncoding RNAs and Atherosclerosis. Current Atherosclerosis Reports, 2014, 16, 407.	4.8	82
102	Protein kinase C isoforms in atherosclerosis: Pro- or anti-inflammatory?. Biochemical Pharmacology, 2014, 88, 139-149.	4.4	41
103	microRNAs: A connection between cholesterol metabolism and neurodegeneration. Neurobiology of Disease, 2014, 72, 48-53.	4.4	39
104	MiR-143/145 deficiency attenuates the progression of atherosclerosis in Ldlr-/- mice. Thrombosis and Haemostasis, 2014, 112, 796-802.	3.4	87
105	MicroRNAs and Cardiovascular Disease. Current Genetic Medicine Reports, 2013, 1, 30-38.	1.9	14
106	MicroRNAs in Metabolic Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 178-185.	2.4	222
107	MicroRNAs and lipoproteins: A connection beyond atherosclerosis?. Atherosclerosis, 2013, 227, 209-215.	0.8	36
108	MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nature Medicine, 2013, 19, 892-900.	30.7	252

#	Article	IF	CITATIONS
109	Impaired liver regeneration in Ldlrâ^'/â^' mice is associated with an altered hepatic profile of cytokines, growth factors, and lipids. Journal of Hepatology, 2013, 59, 731-737.	3.7	18
110	Therapeutic Silencing of MicroRNA-33 Inhibits the Progression of Atherosclerosis in <i>Ldlr</i> ^{â^' â''} Mice—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1973-1977.	2.4	159
111	Control of Cholesterol Metabolism and Plasma High-Density Lipoprotein Levels by microRNA-144. Circulation Research, 2013, 112, 1592-1601.	4.5	187
112	MicroRNA 33 Regulates Glucose Metabolism. Molecular and Cellular Biology, 2013, 33, 2891-2902.	2.3	139
113	A Regulatory Role for MicroRNA 33* in Controlling Lipid Metabolism Gene Expression. Molecular and Cellular Biology, 2013, 33, 2339-2352.	2.3	128
114	MiR-155 Has a Protective Role in the Development of Non-Alcoholic Hepatosteatosis in Mice. PLoS ONE, 2013, 8, e72324.	2.5	105
115	Lymphatic vessels clean up your arteries. Journal of Clinical Investigation, 2013, 123, 1417-1419.	8.2	6
116	Mir-33 regulates cell proliferation and cell cycle progression. Cell Cycle, 2012, 11, 922-933.	2.6	150
117	miR-106b impairs cholesterol efflux and increases Aβ levels by repressing ABCA1 expression. Experimental Neurology, 2012, 235, 476-483.	4.1	161
118	Regulation of cholesterol homeostasis. Cellular and Molecular Life Sciences, 2012, 69, 915-930.	5.4	155
119	Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature, 2011, 478, 404-407.	27.8	647
120	MicroRNA Modulation of Cholesterol Homeostasis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2378-2382.	2.4	81
121	MicroRNA-758 Regulates Cholesterol Efflux Through Posttranscriptional Repression of ATP-Binding Cassette Transporter A1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2707-2714.	2.4	218
122	Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. Journal of Clinical Investigation, 2011, 121, 2921-2931.	8.2	609
123	microRNAs, Plasma Lipids, and Cardiovascular Disease. Current Cardiovascular Risk Reports, 2011, 5, 10-17.	2.0	0
124	MicroRNA-16 and MicroRNA-424 Regulate Cell-Autonomous Angiogenic Functions in Endothelial Cells via Targeting Vascular Endothelial Growth Factor Receptor-2 and Fibroblast Growth Factor Receptor-1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2595-2606.	2.4	227
125	miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proceedings of the United States of America, 2011, 108, 9232-9237.	7.1	615
126	MicroRNAs in lipid metabolism. Current Opinion in Lipidology, 2011, 22, 86-92.	2.7	262

#	Article	IF	CITATIONS
127	Smooth Muscle miRNAs Are Critical for Post-Natal Regulation of Blood Pressure and Vascular Function. PLoS ONE, 2011, 6, e18869.	2.5	116
128	ATP-Binding Cassette Transporter G1 and High-Density Lipoprotein Promote Endothelial NO Synthesis Through a Decrease in the Interaction of Caveolin-1 and Endothelial NO Synthase. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2219-2225.	2.4	89
129	MiR-33 Contributes to the Regulation of Cholesterol Homeostasis. Science, 2010, 328, 1570-1573.	12.6	1,095
130	microRNAs and cholesterol metabolism. Trends in Endocrinology and Metabolism, 2010, 21, 699-706.	7.1	127
131	Endothelial-Specific Overexpression of Caveolin-1 Accelerates Atherosclerosis in Apolipoprotein E-Deficient Mice. American Journal of Pathology, 2010, 177, 998-1003.	3.8	91
132	Akt1 is critical for acute inflammation and histamine-mediated vascular leakage. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14552-14557.	7.1	147
133	Reticulon 4B (Nogo-B) is necessary for macrophage infiltration and tissue repair. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17511-17516.	7.1	82
134	Absence of Akt1 Reduces Vascular Smooth Muscle Cell Migration and Survival and Induces Features of Plaque Vulnerability and Cardiac Dysfunction During Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 2033-2040.	2.4	133
135	Genetic Evidence Supporting a Critical Role of Endothelial Caveolin-1 during the Progression of Atherosclerosis. Cell Metabolism, 2009, 10, 48-54.	16.2	152
136	Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14082-14087.	7.1	453
137	Dicer Dependent MicroRNAs Regulate Gene Expression and Functions in Human Endothelial Cells. Circulation Research, 2007, 100, 1164-1173.	4.5	656
138	Loss of Akt1 Leads to Severe Atherosclerosis and Occlusive Coronary Artery Disease. Cell Metabolism, 2007, 6, 446-457.	16.2	253
139	Identification of Golgi-localized acyl transferases that palmitoylate and regulate endothelial nitric oxide synthase. Journal of Cell Biology, 2006, 174, 369-377.	5.2	146