List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4286805/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aberrant upregulation of the glycolytic enzyme PFKFB3 in CLN7 neuronal ceroid lipofuscinosis. Nature Communications, 2022, 13, 536.	12.8	14
2	Amyloid-β Induces Cdh1-Mediated Rock2 Stabilization Causing Neurodegeneration. Frontiers in Pharmacology, 2022, 13, 884470.	3.5	9
3	Metabolic Messengers: endocannabinoids. Nature Metabolism, 2022, 4, 848-855.	11.9	10
4	l-Serine links metabolism with neurotransmission. Progress in Neurobiology, 2021, 197, 101896.	5.7	44
5	Abrogating mitochondrial ROS in neurons or astrocytes reveals cell-specific impact on mouse behaviour. Redox Biology, 2021, 41, 101917.	9.0	8
6	Opa1 relies on cristae preservation and ATP synthase to curtail reactive oxygen species accumulation in mitochondria. Redox Biology, 2021, 41, 101944.	9.0	34
7	Preconditioning-Activated AKT Controls Neuronal Tolerance to Ischemia through the MDM2–p53 Pathway. International Journal of Molecular Sciences, 2021, 22, 7275.	4.1	6
8	Astrocyte-neuron metabolic cooperation shapes brain activity. Cell Metabolism, 2021, 33, 1546-1564.	16.2	143
9	Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype. EMBO Molecular Medicine, 2021, 13, e13742.	6.9	28
10	p38γ and p38δ regulate postnatal cardiac metabolism through glycogen synthase 1. PLoS Biology, 2021, 19, e3001447.	5.6	8
11	Nuclear WRAP53 promotes neuronal survival and functional recovery after stroke. Science Advances, 2020, 6, .	10.3	11
12	Cell identity and nucleo-mitochondrial genetic context modulate OXPHOS performance and determine somatic heteroplasmy dynamics. Science Advances, 2020, 6, eaba5345.	10.3	31
13	Fgr kinase is required for proinflammatory macrophage activation during diet-induced obesity. Nature Metabolism, 2020, 2, 974-988.	11.9	40
14	Glucose metabolism links astroglial mitochondria to cannabinoid effects. Nature, 2020, 583, 603-608.	27.8	169
15	An ex vivo Approach to Assess Mitochondrial ROS by Flow Cytometry in AAV-tagged Astrocytes in Adult Mice. Bio-protocol, 2020, 10, e3550.	0.4	3
16	Targeting PFKFB3 alleviates cerebral ischemia-reperfusion injury in mice. Scientific Reports, 2019, 9, 11670.	3.3	44
17	Essentiality of fatty acid synthase in the 2D to anchorage-independent growth transition in transforming cells. Nature Communications, 2019, 10, 5011.	12.8	43
18	Neuronal p38α mediates ageâ€associated neural stem cell exhaustion and cognitive decline. Aging Cell, 2019. 18. e13044.	6.7	16

#	Article	IF	CITATIONS
19	Does APC/C ^{CDH1} control the human brain size?. Journal of Neurochemistry, 2019, 151, 8-10.	3.9	1
20	Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour. Nature Metabolism, 2019, 1, 201-211.	11.9	119
21	Amyloid-ß promotes neurotoxicity by Cdk5-induced p53 stabilization. Neuropharmacology, 2019, 146, 19-27.	4.1	40
22	NF-κB Activity Initiates Human ESC-Derived Neural Progenitor Cell Differentiation by Inducing a Metabolic Maturation Program. Stem Cell Reports, 2018, 10, 1766-1781.	4.8	23
23	LRRK2 Expression Is Deregulated in Fibroblasts and Neurons from Parkinson Patients with Mutations in PINK1. Molecular Neurobiology, 2018, 55, 506-516.	4.0	27
24	Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death and Differentiation, 2018, 25, 542-572.	11.2	120
25	Current technical approaches to brain energy metabolism. Clia, 2018, 66, 1138-1159.	4.9	40
26	Single-Nucleotide Polymorphism <i>309T>G</i> in the <i>MDM2</i> Promoter Determines Functional Outcome After Stroke. Stroke, 2018, 49, 2437-2444.	2.0	16
27	Regulation of BDNF Release by ARMS/Kidins220 through Modulation of Synaptotagmin-IV Levels. Journal of Neuroscience, 2018, 38, 5415-5428.	3.6	24
28	Hippocampal neurons require a large pool of glutathione to sustain dendrite integrity and cognitive function. Redox Biology, 2018, 19, 52-61.	9.0	35
29	Mitochondrial Complex I Activity is Conditioned by Supercomplex I–III2–IV Assembly in Brain Cells: Relevance for Parkinson's Disease. Neurochemical Research, 2017, 42, 1676-1682.	3.3	16
30	APC/C ^{Cdh1} -Rock2 pathway controls dendritic integrity and memory. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4513-4518.	7.1	44
31	Mitochondrial respiratory chain disorganization in Parkinson's disease-relevant PINK1 and DJ1 mutants. Neurochemistry International, 2017, 109, 101-105.	3.8	43
32	Neovascularization and functional recovery after intracerebral hemorrhage is conditioned by the Tp53 Arg72Pro single-nucleotide polymorphism. Cell Death and Differentiation, 2017, 24, 144-154.	11.2	35
33	Inflammation, glucose, and vascular cell damage: the role of the pentose phosphate pathway. Cardiovascular Diabetology, 2016, 15, 82.	6.8	84
34	Mitochondrial control of cell bioenergetics in Parkinson's disease. Free Radical Biology and Medicine, 2016, 100, 123-137.	2.9	74
35	Morphology of the larval stages of <i>Pitho aculeata</i> (Gibbes, 1850) (Crustacea, Brachyura,) Tj ETQq1 1 0 12, 854-863.	784314 rgB ⁻ 0.7	「/Overlock 」 7
36	Introduction to Special Issue on Mitochondrial Redox Signaling in Health and Disease. Free Radical Biology and Medicine, 2016, 100, 1-4.	2.9	9

#	Article	IF	CITATIONS
37	Bioenergetics and redox adaptations of astrocytes to neuronal activity. Journal of Neurochemistry, 2016, 139, 115-125.	3.9	192
38	αâ€Ketoglutarate dehydrogenase complex moonlighting: ROS signalling added to the list. Journal of Neurochemistry, 2016, 139, 689-690.	3.9	6
39	Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13063-13068.	7.1	300
40	NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming. Cell Reports, 2016, 14, 1883-1891.	6.4	132
41	Cdk5-mediated inhibition of APC/C-Cdh1 switches on the cyclin D1-Cdk4-pRb pathway causing aberrant S-phase entry of postmitotic neurons. Scientific Reports, 2015, 5, 18180.	3.3	31
42	Uncertainties in pentose-phosphate pathway flux assessment underestimate its contribution to neuronal glucose consumption: relevance for neurodegeneration and aging. Frontiers in Aging Neuroscience, 2015, 7, 89.	3.4	43
43	Regulation of Bcl-xL-ATP Synthase Interaction by Mitochondrial Cyclin B1-Cyclin-Dependent Kinase-1 Determines Neuronal Survival. Journal of Neuroscience, 2015, 35, 9287-9301.	3.6	44
44	Melatonin induces the expression of Nrf2-regulated antioxidant enzymes via PKC and Ca2+ influx activation in mouse pancreatic acinar cells. Free Radical Biology and Medicine, 2015, 87, 226-236.	2.9	56
45	Astrocyte NMDA receptors' activity sustains neuronal survival through a Cdk5–Nrf2 pathway. Cell Death and Differentiation, 2015, 22, 1877-1889.	11.2	136
46	DJ1 represses glycolysis and cell proliferation by transcriptionally up-regulating <i>pink1</i> . Biochemical Journal, 2015, 467, 303-310.	3.7	43
47	TIGAR's promiscuity. Biochemical Journal, 2014, 458, e5-e7.	3.7	8
48	Dichloroacetate prevents restenosis in preclinical animal models of vessel injury. Nature, 2014, 509, 641-644.	27.8	78
49	The oxidized form of vitamin C, dehydroascorbic acid, regulates neuronal energy metabolism. Journal of Neurochemistry, 2014, 129, 663-671.	3.9	59
50	PINK1 deficiency sustains cell proliferation by reprogramming glucose metabolism through HIF1. Nature Communications, 2014, 5, 4514.	12.8	93
51	Pentose-phosphate pathway disruption in the pathogenesis of Parkinson's disease. Translational Neuroscience, 2014, 5, .	1.4	3
52	RNA Interference as a Tool to Selectively Down-Modulate Protein Function. Neuromethods, 2014, , 177-194.	0.3	0
53	Underestimation of the Pentose–Phosphate Pathway in Intact Primary Neurons as Revealed by Metabolic Flux Analysis. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1843-1845.	4.3	37
54	Glutathione and γ-Glutamylcysteine in Hydrogen Peroxide Detoxification. Methods in Enzymology, 2013, 527, 129-144.	1.0	21

#	Article	IF	CITATIONS
55	Brain energy metabolism in glutamate-receptor activation and excitotoxicity: Role for APC/C-Cdh1 in the balance glycolysis/pentose phosphate pathway. Neurochemistry International, 2013, 62, 750-756.	3.8	68
56	Adapting glycolysis to cancer cell proliferation: the MAPK pathway focuses on PFKFB3. Biochemical Journal, 2013, 452, e7-e9.	3.7	22
57	Glutathione and γ-glutamylcysteine in the antioxidant and survival functions of mitochondria. Biochemical Society Transactions, 2013, 41, 106-110.	3.4	35
58	Peroxiredoxin 5 links mitochondrial redox signalling with calcium dynamics: impact on Parkinson's disease. Journal of Neurochemistry, 2013, 125, 332-333.	3.9	14
59	Redox Status and Bioenergetics Liaison in Cancer and Neurodegeneration. International Journal of Cell Biology, 2012, 2012, 1-5.	2.5	7
60	γ-Glutamylcysteine detoxifies reactive oxygen species by acting as glutathione peroxidase-1 cofactor. Nature Communications, 2012, 3, 718.	12.8	132
61	Excitotoxic stimulus stabilizes PFKFB3 causing pentose-phosphate pathway to glycolysis switch and neurodegeneration. Cell Death and Differentiation, 2012, 19, 1582-1589.	11.2	107
62	Antioxidant and bioenergetic coupling between neurons and astrocytes. Biochemical Journal, 2012, 443, 3-11.	3.7	210
63	siRNA knock down of glutamate dehydrogenase in astrocytes affects glutamate metabolism leading to extensive accumulation of the neuroactive amino acids glutamate and aspartate. Neurochemistry International, 2012, 61, 490-497.	3.8	40
64	Integrating Molecular Mechanisms with Synaptic Plasticity in Neurological Disease. Molecular Neurobiology, 2012, 46, 545-546.	4.0	1
65	The human <i>Tp53 Arg72Pro</i> polymorphism explains different functional prognosis in stroke. Journal of Experimental Medicine, 2011, 208, 429-437.	8.5	57
66	The pentoseâ€phosphate pathway in neuronal survival against nitrosative stress. IUBMB Life, 2010, 62, 14-18.	3.4	57
67	Glycolysis: a bioenergetic or a survival pathway?. Trends in Biochemical Sciences, 2010, 35, 145-149.	7.5	297
68	Bilirubin selectively inhibits cytochrome <i>c</i> oxidase activity and induces apoptosis in immature cortical neurons: assessment of the protective effects of glycoursodeoxycholic acid. Journal of Neurochemistry, 2010, 112, 56-65.	3.9	63
69	Group IIA secretory phospholipase A ₂ (GIIA) mediates apoptotic death during NMDA receptor activation in rat primary cortical neurons. Journal of Neurochemistry, 2010, 112, 1574-1583.	3.9	29
70	Human neuroblastoma cells with <i>MYCN</i> amplification are selectively resistant to oxidative stress by transcriptionally upâ€regulating glutamate cysteine ligase. Journal of Neurochemistry, 2010, 113, 819-825.	3.9	20
71	Persistent mitochondrial damage by nitric oxide and its derivatives: neuropathological implications. Frontiers in Neuroenergetics, 2010, 2, 1	5.3	94
72	E3 ubiquitin ligase APC/C-Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 738-741.	7.1	150

#	Article	IF	CITATIONS
73	Cyclo(Hisâ€Pro) promotes cytoprotection by activating Nrf2â€mediated upâ€regulation of antioxidant defence. Journal of Cellular and Molecular Medicine, 2009, 13, 1149-1161.	3.6	35
74	The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C–Cdh1. Nature Cell Biology, 2009, 11, 747-752.	10.3	671
75	Mitochondria and reactive oxygen and nitrogen species in neurological disorders and stroke: Therapeutic implicationsâ^†. Advanced Drug Delivery Reviews, 2009, 61, 1299-1315.	13.7	93
76	Expression of glucose transporter GLUT3 by endotoxin in cultured rat astrocytes: the role of nitric oxide. Journal of Neurochemistry, 2008, 79, 17-24.	3.9	36
77	Cdk5 phosphorylates Cdh1 and modulates cyclin B1 stability in excitotoxicity. EMBO Journal, 2008, 27, 2736-2745.	7.8	115
78	Retinoic acid downregulates Rae1 leading to APCCdh1 activation and neuroblastoma SH-SY5Y differentiation. Oncogene, 2008, 27, 3339-3344.	5.9	56
79	Regulation of glycolysis and pentose–phosphate pathway by nitric oxide: Impact on neuronal survival. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 789-793.	1.0	90
80	Reduced Tumor Growth and Angiogenesis in Endoglin-Haploinsufficient Mice. Tumor Biology, 2007, 28, 1-8.	1.8	52
81	Linking glycolysis with oxidative stress in neural cells: a regulatory role for nitric oxide. Biochemical Society Transactions, 2007, 35, 1224-1227.	3.4	18
82	Poly(ADP-ribose) polymerase-1 protects neurons against apoptosis induced by oxidative stress. Cell Death and Differentiation, 2007, 14, 1211-1221.	11.2	40
83	Inhibition of PTEN by peroxynitrite activates the phosphoinositide-3-kinase/Akt neuroprotective signaling pathway. Journal of Neurochemistry, 2007, 102, 194-205.	3.9	76
84	Modulation of Astroglial Energy Metabolism by Nitric Oxide. Antioxidants and Redox Signaling, 2006, 8, 955-965.	5.4	40
85	Nitric oxide, cell bioenergetics and neurodegeneration. Journal of Neurochemistry, 2006, 97, 1676-1689.	3.9	506
86	Increased mitochondrial respiration maintains the mitochondrial membrane potential and promotes survival of cerebellar neurons in an endogenous model of glutamate receptor activation. Journal of Neurochemistry, 2005, 92, 183-190.	3.9	29
87	Mitochondrial respiratory chain and free radical generation in stroke. Free Radical Biology and Medicine, 2005, 39, 1291-1304.	2.9	207
88	Inhibition of mitochondrial respiration by nitric oxide: Its role in glucose metabolism and neuroprotection. Journal of Neuroscience Research, 2005, 79, 166-171.	2.9	40
89	Knockdown of Glutamate-Cysteine Ligase by Small Hairpin RNA Reveals That Both Catalytic and Modulatory Subunits Are Essential for the Survival of Primary Neurons. Journal of Biological Chemistry, 2005, 280, 38992-39001.	3.4	70
90	Cdh1/Hct1-APC Is Essential for the Survival of Postmitotic Neurons. Journal of Neuroscience, 2005, 25, 8115-8121.	3.6	135

#	Article	IF	CITATIONS
91	Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nature Cell Biology, 2004, 6, 45-51.	10.3	416
92	Differential effect of nitric oxide on glutathione metabolism and mitochondrial function in astrocytes and neurones: implications for neuroprotection/neurodegeneration?. Journal of Neurochemistry, 2004, 86, 228-237.	3.9	145
93	Regulation of glucose metabolism by nitrosative stress in neural cells. Molecular Aspects of Medicine, 2004, 25, 61-73.	6.4	34
94	Inhibition of mitochondrial respiration by nitric oxide rapidly stimulates cytoprotective GLUT3-mediated glucose uptake through 5′-AMP-activated protein kinase. Biochemical Journal, 2004, 384, 629-636.	3.7	73
95	Provoking Neuroprotection by Peroxynitrite. Current Pharmaceutical Design, 2004, 10, 867-877.	1.9	46
96	Peroxisome Proliferator-activated Receptor γ Thiazolidinedione Agonists Increase Glucose Metabolism in Astrocytes. Journal of Biological Chemistry, 2003, 278, 5828-5836.	3.4	154
97	Peroxynitrite Protects Neurons against Nitric Oxide-mediated Apoptosis. Journal of Biological Chemistry, 2003, 278, 864-874.	3.4	147
98	Peroxynitrite Stimulates l-Arginine Transport Systemy+ in Glial Cells. Journal of Biological Chemistry, 2002, 277, 29753-29759.	3.4	21
99	Antioxidants, reactive oxygen and nitrogen species, gene induction and mitochondrial function. Molecular Aspects of Medicine, 2002, 23, 209-285.	6.4	201
100	Impairment of brain mitochondrial function by reactive nitrogen species: the role of glutathione in dictating susceptibility. Neurochemistry International, 2002, 40, 469-474.	3.8	71
101	Nitric oxide accounts for an increased glycolytic rate in activated astrocytes through a glycogenolysis-independent mechanism. Brain Research, 2002, 945, 131-134.	2.2	7
102	D-Glucose Prevents Glutathione Oxidation and Mitochondrial Damage After Glutamate Receptor Stimulation in Rat Cortical Primary Neurons. Journal of Neurochemistry, 2002, 75, 1618-1624.	3.9	69
103	Oxygen and glucose deprivation induces mitochondrial dysfunction and oxidative stress in neurones but not in astrocytes in primary culture. Journal of Neurochemistry, 2002, 81, 207-217.	3.9	211
104	Involvement of reactive oxygen species on gentamicin-induced mesangial cell activation. Kidney International, 2002, 62, 1682-1692.	5.2	61
105	Oleic Acid Inhibits Gap Junction Permeability and Increases Glucose Uptake in Cultured Rat Astrocytes. Journal of Neurochemistry, 2002, 69, 721-728.	3.9	48
106	Peroxynitrite Anion Stimulates Arginine Release from Cultured Rat Astrocytes. Journal of Neurochemistry, 2002, 73, 1446-1452.	3.9	22
107	Depletion of glutathione up-regulates mitochondrial complex I expression in glial cells. Journal of Neurochemistry, 2001, 76, 1593-1596.	3.9	22
108	A transient inhibition of mitochondrial ATP synthesis by nitric oxide synthase activation triggered apoptosis in primary cortical neurons. Journal of Neurochemistry, 2001, 77, 676-690.	3.9	147

#	Article	IF	CITATIONS
109	Induction of Glucose-6-Phosphate Dehydrogenase by Lipopolysaccharide Contributes to Preventing Nitric Oxide-Mediated Glutathione Depletion in Cultured Rat Astrocytes. Journal of Neurochemistry, 2001, 72, 1750-1758.	3.9	79
110	Different responses of astrocytes and neurons to nitric oxide: The role of glycolytically generated ATP in astrocyte protection. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 15294-15299.	7.1	363
111	Nitric oxide-mediated mitochondrial impairment in neural cells: a role for glucose metabolism in neuroprotection. Progress in Brain Research, 2001, 132, 441-454.	1.4	5
112	Nitric oxide mediates glutamate-induced mitochondrial depolarization in rat cortical neurons. Brain Research, 1999, 816, 580-586.	2.2	47
113	The assumption that nitric oxide inhibits mitochondrial ATP synthesis is correct. FEBS Letters, 1999, 446, 261-263.	2.8	84
114	Nitric oxide mediates brain mitochondrial maturation immediately after birth. FEBS Letters, 1999, 452, 290-294.	2.8	13
115	Nitric oxide, mitochondria and neurological disease. Biochimica Et Biophysica Acta - Bioenergetics, 1999, 1410, 215-228.	1.0	415
116	Roles of nitric oxide in brain hypoxia-ischemia. Biochimica Et Biophysica Acta - Bioenergetics, 1999, 1411, 415-436.	1.0	269
117	Nitric oxide mediates brain mitochondrial damage during perinatal anoxia. Brain Research, 1998, 787, 117-122.	2.2	39
118	Glutamate neurotoxicity is associated with nitric oxide-mediated mitochondrial dysfunction and glutathione depletion. Brain Research, 1998, 790, 209-216.	2.2	137
119	53 Astrocytic mitochondrial respiratory chain damage: effect on cellular ATP levels. Biochemical Society Transactions, 1998, 26, S346-S346.	3.4	4
120	Nitric oxide, energy metabolism and neurological disease. Biochemical Society Transactions, 1997, 25, 939-943.	3.4	23
121	Potential mechanisms for nitric oxide-mediated impairment of brain mitochondrial energy metabolism. Biochemical Society Transactions, 1997, 25, 944-949.	3.4	27
122	Evaluation of the efficacy of potential therapeutic agents at protecting against nitric oxide synthase-mediated mitochondrial damage in activated astrocytes. Brain Research Protocols, 1997, 1, 258-262.	1.6	14
123	Effect of valproate on the metabolism of the central nervous system. Life Sciences, 1997, 60, 1933-1942.	4.3	35
124	Interrelationships between astrocyte function, oxidative stress and antioxidant status within the central nervous system. Progress in Neurobiology, 1997, 52, 261-281.	5.7	156
125	Nitric Oxideâ€Mediated Mitochondrial Damage in the Brain: Mechanisms and Implications for Neurodegenerative Diseases. Journal of Neurochemistry, 1997, 68, 2227-2240.	3.9	458
126	Inhibition of astrocyte gap junctional communication by ATP depletion is reversed by calcium sequestration. FEBS Letters, 1996, 392, 225-228.	2.8	33

#	Article	IF	CITATIONS
127	Age Dependent Changes in the Cerebrospinal Fluid Concentration of Nitrite and Nitrate. Annals of Clinical Biochemistry, 1996, 33, 71-72.	1.6	15
128	Glutathione Protects Astrocytes from Peroxynitrite-Mediated Mitochondrial Damage: Implications for Neuronal/ Astrocytic Trafficking and Neurodegeneration. Developmental Neuroscience, 1996, 18, 391-396.	2.0	113
129	Depletion of brain glutathione results in a decrease of glutathione reductase activity; an enzyme susceptible to oxidative damage. Brain Research, 1996, 716, 118-122.	2.2	97
130	Mitochondrial damage: An important feature in a number of inborn errors of metabolism?. Journal of Inherited Metabolic Disease, 1996, 19, 140-142.	3.6	17
131	Glutathione depletion is accompanied by increased neuronal nitric oxide synthase activity. Neurochemical Research, 1996, 21, 35-39.	3.3	40
132	Nitric oxide-mediated mitochondrial damage: A potential neuroprotective role for glutathione. Free Radical Biology and Medicine, 1996, 21, 995-1001.	2.9	240
133	Induction of Nitric Oxide Synthase Inhibits Gap Junction Permeability in Cultured Rat Astrocytes. Journal of Neurochemistry, 1996, 66, 2091-2099.	3.9	87
134	Fuel Utilization by Early Newborn Brain Is Preserved under Congenital Hypothyroidism in the Rat. Pediatric Research, 1996, 40, 410-414.	2.3	6
135	Evidence for increased nitric oxide production in multiple sclerosis Journal of Neurology, Neurosurgery and Psychiatry, 1995, 58, 107-107.	1.9	112
136	Nitric oxide produced by activated astrocytes rapidly and reversibly inhibits cellular respiration. Neuroscience Letters, 1995, 193, 201-204.	2.1	204
137	Effect of Peroxynitrite on the Mitochondrial Respiratory Chain: Differential Susceptibility of Neurones and Astrocytes in Primary Culture. Journal of Neurochemistry, 1995, 64, 1965-1972.	3.9	446
138	Trolox protects mitochondrial complex IV from nitric oxide-mediated damage in astrocytes. Brain Research, 1994, 668, 243-245.	2.2	54
139	Inhibition of neonatal brain fuel utilization by valproate and E-Δ2-valproate is not a consequence of the stimulation of the Î ³ -aminobutyric acid shunt. Life Sciences, 1994, 55, PL397-PL402.	4.3	4
140	Effect of valproate on lipogenesis in neonatal rat brain. Biochemical Pharmacology, 1993, 45, 1283-1288.	4.4	9
141	Lipogenesis from Lactate in Fetal Rat Brain during Late Gestation. Pediatric Research, 1993, 33, 66-71.	2.3	17
142	Lipogenesis from lactate in rat neurons and astrocytes in primary culture. Biochemical Journal, 1993, 294, 635-638.	3.7	65
143	Ketogenesis from Lactate in Rat Liver during the Perinatal Period. Pediatric Research, 1992, 31, 415-418.	2.3	5
144	The fate of lactate in isolated cells from early neonatal rat brain. Comparison with glucose and 3-hydroxybutyrate. Biochemical Society Transactions, 1991, 19, 141S-141S.	3.4	2

#	Article	IF	CITATIONS
145	Lactate utilization by neonatal rat liver <i>in vitro</i> . Biochemical Society Transactions, 1990, 18, 1274-1275.	3.4	1
146	Inhibition of sterol but not fatty acid synthesis by valproate in developing rat brain in vivo. Biochemical Journal, 1990, 272, 251-253.	3.7	10
147	Effect of hypoxia on urea synthesis in neonatal rat liver <i>in vitro</i> . Biochemical Society Transactions, 1990, 18, 1284-1285.	3.4	1