Aviad Levin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4286515/publications.pdf Version: 2024-02-01

Δυίλο Γενιν

#	Article	IF	CITATIONS
1	The Pathological G51D Mutation in Alpha-Synuclein Oligomers Confers Distinct Structural Attributes and Cellular Toxicity. Molecules, 2022, 27, 1293.	1.7	6
2	One-Step Generation of Multisomes from Lipid-Stabilized Double Emulsions. ACS Applied Materials & Interfaces, 2021, 13, 6739-6747.	4.0	10
3	From Protein Building Blocks to Functional Materials. ACS Nano, 2021, 15, 5819-5837.	7.3	83
4	pHâ€Responsive Capsules with a Fibril Scaffold Shell Assembled from an Amyloidogenic Peptide. Small, 2021, 17, e2007188.	5.2	13
5	Controlled self-assembly of plant proteins into high-performance multifunctional nanostructured films. Nature Communications, 2021, 12, 3529.	5.8	50
6	Label-Free Protein Analysis Using Liquid Chromatography with Gravimetric Detection. Analytical Chemistry, 2021, 93, 2848-2853.	3.2	10
7	Kinetic and Thermodynamic Driving Factors in the Assembly of Phenylalanine-Based Modules. ACS Nano, 2021, 15, 18305-18311.	7.3	19
8	Modulating the Mechanical Performance of Macroscale Fibers through Shearâ€Induced Alignment and Assembly of Protein Nanofibrils. Small, 2020, 16, e1904190.	5.2	39
9	Biomolecular condensates undergo a generic shear-mediated liquid-to-solid transition. Nature Nanotechnology, 2020, 15, 841-847.	15.6	101
10	Phase Transition and Crystallization Kinetics of a Supramolecular System in a Microfluidic Platform. Chemistry of Materials, 2020, 32, 8342-8349.	3.2	22
11	Biomimetic peptide self-assembly for functional materials. Nature Reviews Chemistry, 2020, 4, 615-634.	13.8	411
12	Multi-scale microporous silica microcapsules from gas-in water-in oil emulsions. Soft Matter, 2020, 16, 3082-3087.	1.2	11
13	Continuous Flow Reactors from Microfluidic Compartmentalization of Enzymes within Inorganic Microparticles. ACS Applied Materials & amp; Interfaces, 2020, 12, 32951-32960.	4.0	15
14	Multidimensional protein characterisation using microfluidic post-column analysis. Lab on A Chip, 2020, 20, 2663-2673.	3.1	8
15	Lipid-Stabilized Double Emulsions Generated in Planar Microfluidic Devices. Langmuir, 2020, 36, 2349-2356.	1.6	19
16	Biocompatible Hybrid Organic/Inorganic Microhydrogels Promote Bacterial Adherence and Eradication <i>in Vitro</i> and <i>in Vivo</i> . Nano Letters, 2020, 20, 1590-1597.	4.5	38
17	Microfluidic approaches for the analysis of protein–protein interactionsÂin solution. Biophysical Reviews, 2020, 12, 575-585	1.5	32
18	Mechanism of droplet-formation in a supersonic microfluidic spray device. Applied Physics Letters, 2020, 116, .	1.5	14

Aviad Levin

#	Article	lF	CITATIONS
19	Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers through Liquid–Liquid Phase Separation. Angewandte Chemie - International Edition, 2019, 58, 18116-18123.	7.2	241
20	Innenrücktitelbild: Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers through Liquid–Liquid Phase Separation (Angew. Chem. 50/2019). Angewandte Chemie, 2019, 131, 18463-18463.	1.6	0
21	Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers through Liquid–Liquid Phase Separation. Angewandte Chemie, 2019, 131, 18284-18291.	1.6	79
22	Programmable Onâ€Chip Artificial Cell Producing Postâ€Translationally Modified Ubiquitinated Protein. Small, 2019, 15, 1901780.	5.2	7
23	Fabrication and Characterization of Reconstituted Silk Microgels for the Storage and Release of Small Molecules. Macromolecular Rapid Communications, 2019, 40, e1800898.	2.0	29
24	Physical Determinants of Amyloid Assembly in Biofilm Formation. MBio, 2019, 10, .	1.8	66
25	Microfluidic Diffusion Platform for Characterizing the Sizes of Lipid Vesicles and the Thermodynamics of Protein–Lipid Interactions. Analytical Chemistry, 2018, 90, 3284-3290.	3.2	20
26	Differential inhibition of metabolite amyloid formation by generic fibrillation-modifying polyphenols. Communications Chemistry, 2018, 1, .	2.0	52
27	Microfluidic approaches for probing amyloid assembly and behaviour. Lab on A Chip, 2018, 18, 999-1016.	3.1	27
28	Mechanobiology of Protein Droplets: Force Arises from Disorder. Cell, 2018, 175, 1457-1459.	13.5	21
29	Observation of molecular self-assembly events in massively parallel microdroplet arrays. Lab on A Chip, 2018, 18, 3303-3309.	3.1	28
30	Opal-like Multicolor Appearance of Self-Assembled Photonic Array. ACS Applied Materials & Interfaces, 2018, 10, 20783-20789.	4.0	17
31	Determination of Polypeptide Conformation with Nanoscale Resolution in Water. ACS Nano, 2018, 12, 6612-6619.	7.3	97
32	DNA-Coated Functional Oil Droplets. Langmuir, 2018, 34, 10073-10080.	1.6	12
33	Self-Assembly-Mediated Release of Peptide Nanoparticles through Jets Across Microdroplet Interfaces. ACS Applied Materials & Interfaces, 2018, 10, 27578-27583.	4.0	14
34	Selfâ€assembled Protein Fibrilâ€metal Oxide Nanocomposites. Israel Journal of Chemistry, 2017, 57, 724-728.	1.0	5
35	Hierarchical Biomolecular Emulsions Using 3-D Microfluidics with Uniform Surface Chemistry. Biomacromolecules, 2017, 18, 3642-3651.	2.6	30
36	Thermodynamics of Polypeptide Supramolecular Assembly in the Short-Chain Limit. Journal of the American Chemical Society, 2017, 139, 16134-16142.	6.6	28

Aviad Levin

#	Article	IF	CITATIONS
37	Mechanism of biosurfactant adsorption to oil/water interfaces from millisecond scale tensiometry measurements. Interface Focus, 2017, 7, 20170013.	1.5	15
38	Synthesis of Nonequilibrium Supramolecular Peptide Polymers on a Microfluidic Platform. Journal of the American Chemical Society, 2016, 138, 9589-9596.	6.6	27
39	Controlling the Physical Dimensions of Peptide Nanotubes by Supramolecular Polymer Coassembly. ACS Nano, 2016, 10, 7436-7442.	7.3	91
40	Elastic instability-mediated actuation by a supra-molecular polymer. Nature Physics, 2016, 12, 926-930.	6.5	32
41	Fmoc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials. Chemical Society Reviews, 2016, 45, 3935-3953.	18.7	366
42	Entropic Phase Transitions with Stable Twisted Intermediates of Bioâ€Inspired Selfâ€Assembly. Chemistry - A European Journal, 2016, 22, 15237-15241.	1.7	8
43	Dynamic microfluidic control of supramolecular peptide self-assembly. Nature Communications, 2016, 7, 13190.	5.8	89
44	Solventâ€Induced Selfâ€Assembly of Highly Hydrophobic Tetra―and Pentaphenylalanine Peptides. Israel Journal of Chemistry, 2015, 55, 756-762.	1.0	11
45	Expanding the Solvent Chemical Space for Self-Assembly of Dipeptide Nanostructures. ACS Nano, 2014, 8, 1243-1253.	7.3	146
46	Ostwald's rule of stages governs structural transitions and morphology of dipeptide supramolecular polymers. Nature Communications, 2014, 5, 5219.	5.8	197
47	Naphthoquinone-tyrptophan reduces neurotoxic Aβ*56 levels and improves cognition in Alzheimer's disease animal model. Neurobiology of Disease, 2012, 46, 663-672.	2.1	37
48	Orally Administrated Cinnamon Extract Reduces Î ² -Amyloid Oligomerization and Corrects Cognitive Impairment in Alzheimer's Disease Animal Models. PLoS ONE, 2011, 6, e16564.	1.1	160