
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4286211/publications.pdf Version: 2024-02-01

Εμο δλοσο

#	Article	IF	CITATIONS
1	First-order VEM for Reissner–Mindlin plates. Computational Mechanics, 2022, 69, 315-333.	2.2	2
2	Stress peaks, stiffening and back-flow in bilayer poro-elastic metamaterials. International Journal of Solids and Structures, 2022, 236-237, 111334.	1.3	2
3	Experimental study and numerical modeling of ENF scheme: Comparison of different beam approaches. Engineering Fracture Mechanics, 2022, 262, 108230.	2.0	2
4	Cohesive fracture evolution within virtual element method. Engineering Fracture Mechanics, 2022, 269, 108464.	2.0	3
5	Higher order adhesive effects in composite beams. European Journal of Mechanics, A/Solids, 2021, 85, 104108.	2.1	3
6	An enhanced VEM formulation for plane elasticity. Computer Methods in Applied Mechanics and Engineering, 2021, 376, 113663.	3.4	19
7	Multiscale analysis of out-of-plane masonry elements using different structural models at macro and microscale. Computers and Structures, 2021, 247, 106477.	2.4	17
8	Editorial to the special issue: Recent advances in Computational Mechanics and Innovative Materials, in honor of Professor J.N. Reddy for his 75th birthday. Meccanica, 2021, 56, 1265-1267.	1.2	0
9	Analytical solution for a 5-parameter beam displacement model. International Journal of Mechanical Sciences, 2021, 201, 106496.	3.6	7
10	A shape memory alloy helix model accounting for extension and torsion. European Journal of Mechanics, A/Solids, 2021, 89, 104281.	2.1	6
11	TFA and HS based homogenization techniques for nonlinear composites. International Journal of Solids and Structures, 2021, 225, 111050.	1.3	4
12	Nonlocal damage and interface modeling approach for the micro-scale analysis of FRCM. Computers and Structures, 2021, 254, 106582.	2.4	7
13	Modeling Strategies for the Computational Analysis of Unreinforced Masonry Structures: Review and Classification. Archives of Computational Methods in Engineering, 2020, 27, 1153-1185.	6.0	245
14	Laser treatment surface: An innovative method to increase the adhesive bonding of ENF joints in CFRP. Composite Structures, 2020, 233, 111638.	3.1	24
15	Micromechanical modeling of the constitutive response of FRCM composites. Construction and Building Materials, 2020, 236, 117539.	3.2	24
16	Designing stress for optimizing and toughening truss-like structures. Meccanica, 2020, 55, 1603-1622.	1.2	9
17	Micromechanical and multiscale computational modeling for stability analysis of masonry elements. Engineering Structures, 2020, 211, 110428.	2.6	10
18	VEM-based tracking algorithm for cohesive/frictional 2D fracture. Computer Methods in Applied Mechanics and Engineering, 2020, 365, 112956.	3.4	24

#	Article	IF	CITATIONS
19	Static Analysis of a Double-Cap Masonry Dome. Lecture Notes in Mechanical Engineering, 2020, , 2082-2093.	0.3	3
20	Damaging of FRCM Composites Through a Micro-scale Numerical Approach. Lecture Notes in Mechanical Engineering, 2020, , 355-366.	0.3	2
21	Tensile constitutive law of FRCM composites: A micro-mechanical modelling approach. AIP Conference Proceedings, 2020, , .	0.3	4
22	Layered Phase Field Approach to Shells. Lecture Notes in Mechanical Engineering, 2020, , 427-437.	0.3	0
23	Corotational Beam-Interface Model for Stability Analysis of Reinforced Masonry Walls. Lecture Notes in Mechanical Engineering, 2020, , 1939-1953.	0.3	1
24	Optimization clustering technique for PieceWise Uniform Transformation Field Analysis homogenization of viscoplastic composites. Computational Mechanics, 2019, 64, 1495-1516.	2.2	13
25	A review of numerical models for masonry structures. , 2019, , 3-53.		20
26	FRCM strengthening of clay brick walls for out of plane loads. Composites Part B: Engineering, 2019, 174, 107050.	5.9	14
27	Homogenization and multiscale analysis. , 2019, , 351-395.		0
28	A new numerical approach for determining optimal thrust curves of masonry arches. European Journal of Mechanics, A/Solids, 2019, 75, 426-442.	2.1	25
29	Numerical simulation of the de-bonding phenomenon of FRCM strengthening systems. Frattura Ed Integrita Strutturale, 2019, 13, 321-333.	0.5	11
30	New trends in mechanics of masonry. Meccanica, 2018, 53, 1565-1569.	1.2	29
31	A homogenized model for the nonlinear analysis of masonry columns in compression. European Journal of Mechanics, A/Solids, 2018, 71, 335-350.	2.1	1
32	Comparison of reduced order homogenization techniques: pRBMOR, NUTFA and MxTFA. Meccanica, 2018, 53, 1291-1312.	1.2	12
33	Experimental performance of FRCM retrofit on out-of-plane behaviour of clay brick walls. Composites Part B: Engineering, 2018, 148, 198-206.	5.9	56
34	Numerical investigation on the bond behavior of FRCM strengthening systems. Composites Part B: Engineering, 2018, 145, 240-251.	5.9	38
35	An enriched damage-frictional cohesive-zone model incorporating stress multi-axiality. Meccanica, 2018, 53, 573-592.	1.2	1
36	Multiscale technique for nonlinear analysis of elastoplastic and viscoplastic composites. Composites Part B: Engineering, 2018, 136, 241-253.	5.9	23

#	Article	IF	CITATIONS
37	Homogenization of heterogeneous masonry beams. Meccanica, 2018, 53, 1699-1717.	1.2	18
38	Numerical simulation of the de-bonding phenomenon of FRCM strengthening systems. Procedia Structural Integrity, 2018, 9, 257-264.	0.3	8
39	Soft and hard interface models for bonded elements. Composites Part B: Engineering, 2018, 153, 480-490.	5.9	20
40	Multiscale analysis of nonlinear composites via a mixed reduced order formulation. Composite Structures, 2018, 203, 810-825.	3.1	2
41	A multiscale force-based curved beam element for masonry arches. Computers and Structures, 2018, 208, 17-31.	2.4	21
42	High-order virtual element method for the homogenization of long fiber nonlinear composites. Computer Methods in Applied Mechanics and Engineering, 2018, 341, 571-585.	3.4	29
43	Homogenization of elastic–viscoplastic composites by the Mixed TFA. Computer Methods in Applied Mechanics and Engineering, 2017, 318, 701-723.	3.4	23
44	Arbitrary order 2D virtual elements for polygonal meshes: part II, inelastic problem. Computational Mechanics, 2017, 60, 643-657.	2.2	73
45	A 3D microstructured cohesive–frictional interface model and its rational calibration for the analysis of masonry panels. International Journal of Solids and Structures, 2017, 122-123, 110-127.	1.3	21
46	Coupled normal-shear stress models for SMA response. Computers and Structures, 2017, 193, 73-86.	2.4	4
47	Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem. Computational Mechanics, 2017, 60, 355-377.	2.2	111
48	Analysis of failure in quasi-brittle materials by 3D multiplane cohesive zone models combining damage, friction and interlocking. Procedia Structural Integrity, 2017, 3, 441-449.	0.3	3
49	A 3D two-scale multiplane cohesive-zone model for mixed-mode fracture with finite dilation. Computer Methods in Applied Mechanics and Engineering, 2017, 313, 857-888.	3.4	14
50	Multiplane Cohesive Zone Models Combining Damage, Friction and Interlocking. Springer Series in Solid and Structural Mechanics, 2017, , 61-86.	0.2	1
51	Computational homogenization of composites experiencing plasticity, cracking and debonding phenomena. Computer Methods in Applied Mechanics and Engineering, 2016, 304, 319-341.	3.4	16
52	Complementary formulation of the TFA for the elasto-plastic analysis of composites. Composite Structures, 2016, 156, 93-100.	3.1	13
53	Nonlinear analysis of masonry panels using a kinematic enriched plane state formulation. International Journal of Solids and Structures, 2016, 90, 194-214.	1.3	37
54	Homogenization techniques for the analysis of porous SMA. Computational Mechanics, 2016, 57, 755-772.	2.2	16

#	Article	IF	CITATIONS
55	Enriched plane state formulation for nonlinear homogenization of in-plane masonry wall. Meccanica, 2016, 51, 2891-2907.	1.2	20
56	A damage model for a finite thickness composite interface accounting for in-plane deformation. Engineering Fracture Mechanics, 2016, 163, 396-415.	2.0	5
57	An interphase model for the analysis of the masonry-FRP bond. Composite Structures, 2016, 138, 322-334.	3.1	12
58	Non-prismatic beams: A simple and effective Timoshenko-like model. International Journal of Solids and Structures, 2016, 90, 236-250.	1.3	62
59	A micromechanical approach for the Cosserat modeling of composites. Meccanica, 2016, 51, 569-592.	1.2	23
60	A HOMOGENIZATION TECHNIQUE FOR ELASTO-PLASTIC COMPOSITES. , 2016, , .		1
61	Debonding Process of Masonry Element Strengthened with FRP. Procedia Engineering, 2015, 109, 27-34.	1.2	5
62	A 3D multiscale cohesive zone model for quasi-brittle materials accounting for friction, damage and interlocking. European Journal of Computational Mechanics, 2015, 24, 144-170.	0.6	10
63	SMA Constitutive Modeling and Analysis of Plates and Composite Laminates. , 2015, , 141-192.		1
64	Micromechanical analysis of porous SMA. Smart Materials and Structures, 2015, 24, 085035.	1.8	14
65	A mixed-mode cohesive-zone model accounting for finite dilation and asperity degradation. International Journal of Solids and Structures, 2015, 67-68, 102-115.	1.3	29
66	TFA-based Homogenization for Composites Subjected to Coupled Damage-friction Effects. Procedia Engineering, 2015, 109, 113-120.	1.2	5
67	Nonlocal damage propagation in the dynamics of masonry elements. Computers and Structures, 2015, 152, 215-227.	2.4	28
68	Investigation on the bond behavior of clay bricks reinforced with SRP and SRG strengthening systems. Materials and Structures/Materiaux Et Constructions, 2015, 48, 3755-3770.	1.3	29
69	A thermodynamically consistent derivation of a frictional-damage cohesive-zone model with different mode I and mode II fracture energies. European Journal of Mechanics, A/Solids, 2015, 49, 13-25.	2.1	36
70	Some Aspects on the Statics of Masonry Arches. , 2015, , 265-290.		3
71	Enhanced modeling approach for multilayer anisotropic plates based on dimension reduction method and Hellinger–Reissner principle. Composite Structures, 2014, 118, 622-633.	3.1	17
72	Damage propagation in a masonry arch subjected to slow cyclic and dynamic loadings. Frattura Ed Integrita Strutturale, 2014, 8, 166-177.	0.5	1

#	Article	IF	CITATIONS
73	Bond-slip analysis via a cohesive-zone model simulating damage, friction and interlocking. Frattura Ed Integrita Strutturale, 2014, 8, 284-292.	0.5	0
74	A new SMA shell element based on the corotational formulation. Computational Mechanics, 2014, 54, 1315-1329.	2.2	17
75	A Force-Based Equivalent Frame Element for Push-Over Analysis of Masonry Structures. Key Engineering Materials, 2014, 624, 405-412.	0.4	5
76	An interface damage model accounting for in-plane effects. International Journal of Solids and Structures, 2014, 51, 4230-4244.	1.3	15
77	Higher order model for soft and hard elastic interfaces. International Journal of Solids and Structures, 2014, 51, 4137-4148.	1.3	63
78	Analytical and numerical modeling of composite-to-brick bond. Materials and Structures/Materiaux Et Constructions, 2014, 47, 1987-2003.	1.3	41
79	An equilibrated macro-element for nonlinear analysis of masonry structures. Engineering Structures, 2014, 70, 82-93.	2.6	29
80	A kinematic enriched plane state formulation for the analysis of masonry panels. European Journal of Mechanics, A/Solids, 2014, 44, 188-200.	2.1	21
81	Modeling of smart concrete beams with shape memory alloy actuators. Engineering Structures, 2014, 75, 63-72.	2.6	11
82	Micro, Multiscale and Macro Models for Masonry Structures. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2014, , 241-291.	0.3	4
83	Modeling Approaches for Masonry Structures. Open Civil Engineering Journal, 2014, 8, 288-300.	0.4	54
84	A nonuniform TFA homogenization technique based on piecewise interpolation functions of the inelastic field. International Journal of Solids and Structures, 2013, 50, 725-742.	1.3	46
85	Coupled body-interface nonlocal damage model for FRP detachment. Computer Methods in Applied Mechanics and Engineering, 2013, 260, 1-23.	3.4	30
86	Modeling and numerical analysis of the bond behavior of masonry elements strengthened with SRP/SRG. Composites Part B: Engineering, 2013, 55, 128-138.	5.9	23
87	Micromechanical analysis of heterogeneous materials subjected to overall Cosserat strains. Mechanics Research Communications, 2013, 54, 27-34.	1.0	40
88	Finite element analysis of masonry panels strengthened with FRPs. Composites Part B: Engineering, 2013, 45, 1296-1309.	5.9	41
89	Localisation analysis in masonry using transformation field analysis. Engineering Fracture Mechanics, 2013, 110, 166-188.	2.0	8
90	A Frame Element Model for the Nonlinear Analysis of FRP-Strengthened Masonry Panels Subjected to In-Plane Loads. Advances in Materials Science and Engineering, 2013, 2013, 1-12.	1.0	4

#	Article	IF	CITATIONS
91	A damage–friction interface model derived from micromechanical approach. International Journal of Solids and Structures, 2012, 49, 3666-3680.	1.3	30
92	Round Robin Test for composite-to-brick shear bond characterization. Materials and Structures/Materiaux Et Constructions, 2012, 45, 1761-1791.	1.3	172
93	A coupled interface-body nonlocal damage model for FRP strengthening detachment. Computational Mechanics, 2012, 50, 335-351.	2.2	18
94	Multiscale damage contact-friction model for periodic masonry walls. Computer Methods in Applied Mechanics and Engineering, 2012, 205-208, 189-203.	3.4	57
95	A multi-scale enriched model for the analysis of masonry panels. International Journal of Solids and Structures, 2012, 49, 865-880.	1.3	70
96	A nonlinear plate finite element formulation for shape memory alloy applications. International Journal for Numerical Methods in Engineering, 2012, 89, 1249-1271.	1.5	10
97	A Beam Finite Element for Nonlinear Analysis of Masonry Elements With or Without Fiber-Reinforced Plastic (FRP) Reinforcements. International Journal of Architectural Heritage, 2011, 5, 693-716.	1.7	37
98	Bond behaviour of CFRP laminates glued on clay bricks: Experimental and numerical study. Composites Part B: Engineering, 2011, 42, 330-340.	5.9	84
99	Simple Model for Bond Behavior of Masonry Elements Strengthened with FRP. Journal of Composites for Construction, 2011, 15, 354-363.	1.7	55
100	Bond Behavior of Historical Clay Bricks Strengthened with Steel Reinforced Polymers (SRP). Materials, 2011, 4, 585-600.	1.3	40
101	Cauchy and Cosserat Equivalent Continua for the Multiscale Analysis of Periodic Masonry Walls. Lecture Notes in Applied and Computational Mechanics, 2011, , 253-268.	2.0	1
102	Experimental tests and numerical modeling of reinforced masonry arches. Engineering Structures, 2010, 32, 776-792.	2.6	95
103	A 3D SMA constitutive model in the framework of finite strain. International Journal for Numerical Methods in Engineering, 2010, 81, 761-785.	1.5	44
104	Cosserat model for periodic masonry deduced by nonlinear homogenization. European Journal of Mechanics, A/Solids, 2010, 29, 724-737.	2.1	69
105	Interface Elements for the Analysis of Masonry Structures. International Journal for Computational Methods in Engineering Science and Mechanics, 2010, 11, 354-373.	1.4	53
106	Elementi di interfaccia per l'analisi di strutture murarie. Frattura Ed Integrita Strutturale, 2009, 3, 3-20.	0.5	0
107	Phenomenological 3D and 1D consistent models for shape-memory alloy materials. Computational Mechanics, 2009, 44, 405-421.	2.2	51
108	A nonlinear homogenization procedure for periodic masonry. European Journal of Mechanics, A/Solids. 2009. 28. 209-222.	2.1	107

#	Article	IF	CITATIONS
109	Modelling and analysis of FRP-strengthened masonry panels. Engineering Structures, 2008, 30, 1842-1860.	2.6	117
110	Stress Analysis of Reinforced Masonry Arches. International Journal for Computational Methods in Engineering Science and Mechanics, 2008, 9, 77-90.	1.4	18
111	Analysis of SMA composite laminates using a multiscale modelling technique. International Journal for Numerical Methods in Engineering, 2007, 70, 1182-1208.	1.5	25
112	Computational Modeling of FRP Reinforced Cementitious Beams. Mechanics of Advanced Materials and Structures, 2006, 13, 339-353.	1.5	7
113	A cohesive damage–friction interface model accounting for water pressure on crack propagation. Computer Methods in Applied Mechanics and Engineering, 2006, 196, 192-209.	3.4	41
114	A mixed FSDT finite element for monoclinic laminated plates. Computers and Structures, 2006, 84, 624-639.	2.4	21
115	Micromechanical analysis of interfacial debonding in unidirectional fiber-reinforced composites. Computers and Structures, 2006, 84, 2200-2211.	2.4	77
116	Combining interface damage and friction in a cohesive-zone model. International Journal for Numerical Methods in Engineering, 2006, 68, 542-582.	1.5	240
117	Micromechanics and Homogenization of SMA-Wire-Reinforced Materials. Journal of Applied Mechanics, Transactions ASME, 2005, 72, 259-268.	1.1	35
118	Numerical Procedure for Elasto-Plastic No-Tension Model. International Journal for Computational Methods in Engineering Science and Mechanics, 2005, 6, 187-199.	1.4	26
119	A Mixed FSDT Finite-Element Formulation for the Analysis of Composite Laminates Without Shear Correction Factors. , 2005, , 345-358.		5
120	Softening Behavior of Reinforced Cementitious Beams. , 2005, , 293-302.		0
121	A Finite Element for the Analysis of Monoclinic Laminated Plates. , 2005, , 333-343.		0
122	Softening behavior of reinforced concrete beams under cyclic loading. International Journal of Solids and Structures, 2004, 41, 3293-3316.	1.3	25
123	A Delamination Model. Lecture Notes in Applied and Computational Mechanics, 2004, , 175-175.	2.0	0
124	Numerical techniques for the analysis of crack propagation in cohesive materials. International Journal for Numerical Methods in Engineering, 2003, 57, 1577-1602.	1.5	8
125	Modelling of SMA materials: Training and two way memory effects. Computers and Structures, 2003, 81, 2301-2317.	2.4	104
126	Superelastic and Shape Memory Effects in Laminated Shape-Memory-Alloy Beams. AIAA Journal, 2003, 41, 100-109.	1.5	58

#	Article	IF	CITATIONS
127	Refined First-Order Shear Deformation Theory Models for Composite Laminates. Journal of Applied Mechanics, Transactions ASME, 2003, 70, 381-390.	1.1	61
128	A plastic nonlocal damage model. Computer Methods in Applied Mechanics and Engineering, 2002, 191, 1291-1310.	3.4	64
129	Analysis of mixed finite elements for laminated composite plates. Computer Methods in Applied Mechanics and Engineering, 2001, 190, 4767-4783.	3.4	12
130	MITC finite elements for laminated composite plates. International Journal for Numerical Methods in Engineering, 2001, 50, 707-738.	1.5	47
131	Thermo-mechanical modelling of a superelastic shape-memory wire under cyclic stretching–bending loadings. International Journal of Solids and Structures, 2001, 38, 6123-6145.	1.3	80
132	Modeling of reinforced masonry elements. International Journal of Solids and Structures, 2001, 38, 4177-4198.	1.3	44
133	A fracture evolution procedure for cohesive materials. International Journal of Fracture, 2001, 110, 241-261.	1.1	8
134	Finite-element Analysis of a Stenotic Artery Revascularization Through a Stent Insertion. Computer Methods in Biomechanics and Biomedical Engineering, 2001, 4, 249-263.	0.9	107
135	A temperature-dependent beam for shape-memory alloys: Constitutive modelling, finite-element implementation and numerical simulations. Computer Methods in Applied Mechanics and Engineering, 1999, 174, 171-190.	3.4	80
136	Partial-mixed formulation and refined models for the analysis of composite laminates within an FSDT. Composite Structures, 1999, 46, 103-113.	3.1	26
137	A mixed-enhanced finite-element for the analysis of laminated composite plates. International Journal for Numerical Methods in Engineering, 1999, 44, 1481-1504.	1.5	71
138	A Delamination Model. Mathematical Properties. Solid Mechanics and Its Applications, 1999, , 151-162.	0.1	0
139	Damage of masonry panels reinforced by FRP sheets. International Journal of Solids and Structures, 1998, 35, 1723-1741.	1.3	58
140	A damage model for masonry structures. European Journal of Mechanics, A/Solids, 1998, 17, 285-303.	2.1	50
141	Variational methods for the homogenization of periodic heterogeneous media. European Journal of Mechanics, A/Solids, 1998, 17, 599-617.	2.1	58
142	A finite-strain cam-clay model in the framework of multiplicative elasto-plasticity. International Journal of Plasticity, 1998, 14, 1155-1187.	4.1	42
143	Mathematical properties of a delamination model. Mathematical and Computer Modelling, 1998, 28, 359-371.	2.0	12
144	A Superelastic Shape-Memory-Alloy Beam Model. Journal of Intelligent Material Systems and Structures, 1997, 8, 489-501.	1.4	117

#	Article	lF	CITATIONS
145	A Layer-Wise Laminate Theory Rationally Deduced From the Three-Dimenstonal Elasticity. Journal of Applied Mechanics, Transactions ASME, 1997, 64, 538-545.	1.1	16
146	A Rational Deduction of Plate Theories from the Three-Dimensional Linear Elasticity. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 1997, 77, 349-366.	0.9	20
147	A one-dimensional model for superelastic shape-memory alloys with different elastic properties between austenite and martensite. International Journal of Non-Linear Mechanics, 1997, 32, 1101-1114.	1.4	246
148	Homogenization technique and damage model for old masonry material. International Journal of Solids and Structures, 1997, 34, 3191-3208.	1.3	185
149	AUGMENTED LAGRANGIAN FINITE-ELEMENTS FOR PLATE CONTACT PROBLEMS. International Journal for Numerical Methods in Engineering, 1996, 39, 4141-4158.	1.5	9
150	A delamination model for laminated composites. International Journal of Solids and Structures, 1996, 33, 483-509.	1.3	71
151	Delamination of beams: an application to the DCB specimen. International Journal of Fracture, 1996, 79, 225-247.	1.1	31
152	Three-dimensional plate and contact/friction elements for laminated composite joints. Computers and Structures, 1995, 54, 689-703.	2.4	12
153	Nonlinear analysis of bimodular composite plates under compression. Computational Mechanics, 1994, 14, 28-37.	2.2	24
154	A Constitutive Model for Bimodular Materials With an Application to Plate Bending. Journal of Applied Mechanics, Transactions ASME, 1992, 59, 220-221.	1.1	13
155	On first- and second-order moderate rotation theories of laminated plates. International Journal for Numerical Methods in Engineering, 1992, 33, 1-17.	1.5	14
156	A consistent model for first-order moderate rotation plate theory. International Journal for Numerical Methods in Engineering, 1992, 35, 2049-2066.	1.5	8
157	Analysis of thick bimodular composite plates using an energy-based constitutive model. Computers and Structures, 1991, 39, 149-154.	2.4	1
158	Mechanical behavior of bimodular laminates on elastic foundation. Theoretical and Applied Fracture Mechanics, 1991, 16, 223-235.	2.1	2
159	Convex Problems in Structural Mechanics. , 1987, , 279-297.		7
160	A Nonlinear Transformation Field Procedure for Periodic Masonry Based on an Equivalent Cosserat Medium. Advanced Materials Research, 0, 89-91, 6-11.	0.3	0
161	Mortar Joints Influence in Debonding of Masonry Element Strengthened with FRP. Key Engineering Materials, 0, 624, 197-204.	0.4	9
162	The Role of the Adhesive on the Bond Behavior of SRPs Applied on Masonry Supports: Experimental and Numerical Study. Key Engineering Materials, 0, 624, 652-659.	0.4	13

#	Article	IF	CITATIONS
163	Local Bond Behavior of FRCM Strengthening Systems: Some Considerations about Modeling and Response. Key Engineering Materials, 0, 747, 101-107.	0.4	14
164	Testing of Fabric Reinforced Cementitious Matrix in Shear without Substrate. Key Engineering Materials, 0, 916, 105-111.	0.4	0
165	A Multi-Level Interface Model for Damaged Masonry. , 0, , .		Ο
166	Damage Propagation in Vibrating Masonry Elements using a Nonlocal Description. , 0, , .		0
167	An Enriched Kinematic Formulation for Masonry Walls with a Damage-Plastic Model. , 0, , .		1