
Hessel L Castricum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4286164/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrothermally stable molecular separation membranes from organically linked silica. Journal of Materials Chemistry, 2008, 18, 2150.	6.7	180
2	Tailoring the Separation Behavior of Hybrid Organosilica Membranes by Adjusting the Structure of the Organic Bridging Group. Advanced Functional Materials, 2011, 21, 2319-2329.	7.8	155
3	Hybrid ceramic nanosieves: stabilizing nanopores with organic links. Chemical Communications, 2008, , 1103.	2.2	132
4	High-performance hybrid pervaporation membranes with superior hydrothermal and acid stability. Journal of Membrane Science, 2008, 324, 111-118.	4.1	114
5	Pushing membrane stability boundaries with HybSi® pervaporation membranes. Journal of Membrane Science, 2011, 380, 124-131.	4.1	87
6	Hydrophobic modification of Î ³ -alumina membranes with organochlorosilanes. Journal of Membrane Science, 2004, 243, 125-132.	4.1	81
7	Hybrid organosilica membranes and processes: Status and outlook. Separation and Purification Technology, 2014, 121, 2-12.	3.9	70
8	Stable Hybrid Silica Nanosieve Membranes for the Dehydration of Lower Alcohols. ChemSusChem, 2009, 2, 158-160.	3.6	62
9	Hybrid silica membranes with enhanced hydrogen and CO2 separation properties. Journal of Membrane Science, 2015, 488, 121-128.	4.1	60
10	The effect of the reduction temperature on the structure of Cu/ZnO/SiO2 catalysts for methanol synthesis. Journal of Catalysis, 2005, 229, 136-143.	3.1	58
11	Tuning the nanopore structure and separation behavior of hybrid organosilica membranes. Microporous and Mesoporous Materials, 2014, 185, 224-234.	2.2	54
12	Evaluation of hybrid silica sols for stable microporous membranes using high-throughput screening. Journal of Sol-Gel Science and Technology, 2011, 57, 245-252.	1.1	49
13	Dielectric heating effects on the activity and SO2 resistance of La0.8Ce0.2MnO3 perovskite for methane oxidation. Journal of Catalysis, 2004, 221, 523-531.	3.1	45
14	Studies of water and ice in hydrophilic and hydrophobic mesoporous silicas: pore characterisation and phase transformations. Physical Chemistry Chemical Physics, 2010, 12, 2838.	1.3	45
15	From hydrophilic to hydrophobic HybSi® membranes: A change of affinity and applicability. Journal of Membrane Science, 2013, 428, 157-162.	4.1	45
16	Microwave-assisted in-situ regeneration of a perovskite coated diesel soot filter. Chemical Engineering Science, 2005, 60, 797-804.	1.9	38
17	Microporous structure and enhanced hydrophobicity in methylated SiO2 for molecular separation. Journal of Materials Chemistry, 2007, 17, 1509.	6.7	38
18	Structure of hybrid organic–inorganic sols for the preparation of hydrothermally stable membranes. Journal of Sol-Gel Science and Technology, 2008, 48, 11-17.	1.1	35

HESSEL L CASTRICUM

#	Article	IF	CITATIONS
19	Structural studies of water in hydrophilic and hydrophobic mesoporous silicas: An x-ray and neutron diffraction study at 297 K. Journal of Chemical Physics, 2011, 134, 064509.	1.2	35
20	Step response and transient isotopic labelling studies into the mechanism of CO oxidation over La0.8Ce0.2MnO3 perovskite. Applied Catalysis B: Environmental, 2004, 54, 93-103.	10.8	32
21	Hydrophobisation of mesoporous γ-Al2O3 with organochlorosilanes—efficiency and structure. Microporous and Mesoporous Materials, 2005, 83, 1-9.	2.2	29
22	Highly Mixed Phases in Ball-milled Cu/ZnO Catalysts:  An EXAFS and XANES Study. Journal of Physical Chemistry B, 2006, 110, 16892-16901.	1.2	29
23	Oxidation and reduction in copper/zinc oxides by mechanical milling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 418-423.	2.6	28
24	Structure and Growth of Polymeric Niobia-Silica Mixed-Oxide Sols for Microporous Molecular Sieving Membranes: A SAXS Study. Chemistry of Materials, 2009, 21, 1822-1828.	3.2	28
25	Increasing the hydrothermal stability of mesoporous SiO2 with methylchlorosilanes—a â€~structural' study. Microporous and Mesoporous Materials, 2006, 88, 63-71.	2.2	27
26	Mechanochemical Reactions in Cu/ZnO Catalysts Induced by Mechanical Milling. Journal of Physical Chemistry B, 2001, 105, 7928-7937.	1.2	26
27	Exfoliation and Restacking of Lepidocrocite-type Layered Titanates Studied by Small-Angle X-ray Scattering. Journal of Physical Chemistry C, 2010, 114, 21281-21286.	1.5	22
28	Nanoscale Structure Evolution in Alkoxide–Carboxylate Sol–Gel Precursor Solutions of Barium Titanate. Journal of Physical Chemistry C, 2011, 115, 20449-20459.	1.5	16
29	Evolution of microstructure in mixed niobia-hybrid silica thin films from sol–gel precursors. Journal of Colloid and Interface Science, 2013, 404, 24-35.	5.0	13
30	Time-resolved small angle X-ray scattering study of sol–gel precursor solutions of lead zirconate titanate and zirconia. Journal of Colloid and Interface Science, 2012, 369, 184-192.	5.0	12
31	Nanostructure Development in Alkoxide-Carboxylate-Derived Precursor Films of Barium Titanate. Journal of Physical Chemistry C, 2012, 116, 425-434.	1.5	10
32	Free volume changes in mechanically milled PS and PC studied by positron annihilation lifetime spectroscopy (PALS). Polymer Engineering and Science, 2004, 44, 1351-1359.	1.5	9
33	New Highly Mixed Phases in Ball-Milled Cu/ZnO Catalysts as Established by EXAFS and XANES. AIP Conference Proceedings, 2007, , .	0.3	6
34	Development of Nanoscale Inhomogeneities during Drying of Sol–Gel Derived Amorphous Lead Zirconate Titanate Precursor Thin Films. Langmuir, 2011, 27, 11081-11089.	1.6	6
35	Perovskite-type oxides as susceptor materials in dielectric heating. Journal of Materials Science, 2007, 42, 5851-5859.	1.7	5
36	Structural studies of water in a confined hydrophobic environment. Journal of Physics: Conference Series, 2009, 177, 012010.	0.3	3

#	Article	IF	CITATIONS
37	Instrumentation for Δ photoproduction experiments on nuclei with high-energy resolution. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 399, 160-170.	0.7	2
38	Mechanochemical Reactions on Copper-Based Compounds. Journal of Metastable and Nanocrystalline Materials, 1999, 2-6, 209-214.	0.1	1
39	Versatile membrane makes large-scale energy-efficient separation possible. Membrane Technology, 2011, 2011, 9.	0.5	0
40	MEMBRANES: Tailoring the Separation Behavior of Hybrid Organosilica Membranes by Adjusting the Structure of the Organic Bridging Group (Adv. Funct. Mater. 12/2011). Advanced Functional Materials, 2011, 21, 2318-2318.	7.8	0
41	STRUCTURAL TRANSFORMATIONS IN AMORPHOUS POLYMERS BY MECHANICAL MILLING. , 1998, , .		0