List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4286153/publications.pdf Version: 2024-02-01

		6613	6131
269	27,361	79	159
papers	citations	h-index	g-index
279	279	279	26308
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature Materials, 2013, 12, 518-522.	27.5	4,021
2	Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nature Materials, 2013, 12, 81-87.	27.5	1,768
3	β-Ketoenamine-Linked Covalent Organic Frameworks Capable of Pseudocapacitive Energy Storage. Journal of the American Chemical Society, 2013, 135, 16821-16824.	13.7	949
4	Underpotential Deposition at Single Crystal Surfaces of Au, Pt, Ag and Other Materials. Chemical Reviews, 2001, 101, 1897-1930.	47.7	825
5	Yolk–Shell Structure of Polyaniline-Coated Sulfur for Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2013, 135, 16736-16743.	13.7	734
6	Effects of Liquid Electrolytes on the Charge–Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies. Journal of Physical Chemistry C, 2011, 115, 25132-25137.	3.1	515
7	Electrocatalytic Activity of Ordered Intermetallic Phases for Fuel Cell Applications. Journal of the American Chemical Society, 2004, 126, 4043-4049.	13.7	485
8	Tunable High Performance Cross-Linked Alkaline Anion Exchange Membranes for Fuel Cell Applications. Journal of the American Chemical Society, 2010, 132, 3400-3404.	13.7	440
9	Rectifying interfaces using two-layer films of electrochemically polymerized vinylpyridine and vinylbipyridine complexes of ruthenium and iron on electrodes. Journal of the American Chemical Society, 1981, 103, 1-5.	13.7	427
10	Phosphonium-Functionalized Polyethylene: A New Class of Base-Stable Alkaline Anion Exchange Membranes. Journal of the American Chemical Society, 2012, 134, 18161-18164.	13.7	425
11	Superior Charge Storage and Power Density of a Conducting Polymer-Modified Covalent Organic Framework. ACS Central Science, 2016, 2, 667-673.	11.3	349
12	Electroluminescent devices from ionic transition metal complexes. Journal of Materials Chemistry, 2007, 17, 2976-2988.	6.7	338
13	Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films. ACS Nano, 2015, 9, 3178-3183.	14.6	318
14	Pt-Decorated PdCo@Pd/C Coreâ^'Shell Nanoparticles with Enhanced Stability and Electrocatalytic Activity for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2010, 132, 17664-17666.	13.7	300
15	Tuning Oxygen Reduction Reaction Activity via Controllable Dealloying: A Model Study of Ordered Cu ₃ Pt/C Intermetallic Nanocatalysts. Nano Letters, 2012, 12, 5230-5238.	9.1	291
16	Template-Free Synthesis of Hollow-Structured Co ₃ O ₄ Nanoparticles as High-Performance Anodes for Lithium-Ion Batteries. ACS Nano, 2015, 9, 1775-1781.	14.6	275
17	Tailoring Pore Size of Nitrogenâ€Doped Hollow Carbon Nanospheres for Confining Sulfur in Lithium–Sulfur Batteries. Advanced Energy Materials, 2015, 5, 1401752.	19.5	273
18	Micromethod for the Investigation of the Interactions between DNA and Redox-Active Molecules. Analytical Chemistry, 1998, 70, 3162-3169.	6.5	263

HéCTOR ABRUñA

#	Article	IF	CITATIONS
19	Phenazine-Based Covalent Organic Framework Cathode Materials with High Energy and Power Densities. Journal of the American Chemical Society, 2020, 142, 16-20.	13.7	256
20	Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries. Accounts of Chemical Research, 2018, 51, 273-281.	15.6	249
21	Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte. Nano Letters, 2014, 14, 1453-1459.	9.1	238
22	Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes. Physical Chemistry Chemical Physics, 2007, 9, 49-77.	2.8	226
23	A Ring-Opening Metathesis Polymerization Route to Alkaline Anion Exchange Membranes: Development of Hydroxide-Conducting Thin Films from an Ammonium-Functionalized Monomer. Journal of the American Chemical Society, 2009, 131, 12888-12889.	13.7	220
24	Pt Skin on AuCu Intermetallic Substrate: A Strategy to Maximize Pt Utilization for Fuel Cells. Journal of the American Chemical Society, 2014, 136, 9643-9649.	13.7	220
25	Synergistic Mn-Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells. Nature Communications, 2019, 10, 1506.	12.8	212
26	Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayers. ACS Nano, 2018, 12, 10463-10472.	14.6	203
27	Redox-Active Ferrocenyl Dendrimers:  Thermodynamics and Kinetics of Adsorption, In-Situ Electrochemical Quartz Crystal Microbalance Study of the Redox Process and Tapping Mode AFM Imaging. Journal of the American Chemical Society, 1997, 119, 10763-10773.	13.7	201
28	Synthesis of Structurally Ordered Pt ₃ Ti and Pt ₃ V Nanoparticles as Methanol Oxidation Catalysts. Journal of the American Chemical Society, 2014, 136, 10206-10209.	13.7	197
29	Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chemical Reviews, 2022, 122, 6117-6321.	47.7	195
30	Batteries and electrochemical capacitors. Physics Today, 2008, 61, 43-47.	0.3	187
31	Amylopectin Wrapped Graphene Oxide/Sulfur for Improved Cyclability of Lithium–Sulfur Battery. ACS Nano, 2013, 7, 8801-8808.	14.6	181
32	Effects of Dendrimer Generation on Site Isolation of Core Moieties:Â Electrochemical and Fluorescence Quenching Studies with Metalloporphyrin Core Dendrimers. Chemistry of Materials, 1998, 10, 30-38.	6.7	180
33	Metal–Organic-Framework-Derived Co–Fe Bimetallic Oxygen Reduction Electrocatalysts for Alkaline Fuel Cells. Journal of the American Chemical Society, 2019, 141, 10744-10750.	13.7	176
34	Electrocatalytic Oxidation of Formic Acid at an Ordered Intermetallic PtBi Surface. ChemPhysChem, 2003, 4, 193-199.	2.1	174
35	Synthesis, Characterization, and Electrocatalytic Activity of PtBi and PtPb Nanoparticles Prepared by Borohydride Reduction in Methanol. Chemistry of Materials, 2006, 18, 3365-3372.	6.7	174
36	Pt-Rich _{core} /Sn-Rich _{subsurface} /Pt _{skin} Nanocubes As Highly Active and Stable Electrocatalysts for the Ethanol Oxidation Reaction. Journal of the American Chemical Society, 2018, 140, 3791-3797.	13.7	166

#	Article	IF	CITATIONS
37	Facile Synthesis of Carbon-Supported Pd–Co Core–Shell Nanoparticles as Oxygen Reduction Electrocatalysts and Their Enhanced Activity and Stability with Monolayer Pt Decoration. Chemistry of Materials, 2012, 24, 2274-2281.	6.7	163
38	Three-Dimensional Tracking and Visualization of Hundreds of Ptâ^'Co Fuel Cell Nanocatalysts During Electrochemical Aging. Nano Letters, 2012, 12, 4417-4423.	9.1	162
39	Electrocatalytic Performance of Fuel Oxidation by Pt ₃ Ti Nanoparticles. Journal of the American Chemical Society, 2008, 130, 5452-5458.	13.7	157
40	Cobalt-Based Nitride-Core Oxide-Shell Oxygen Reduction Electrocatalysts. Journal of the American Chemical Society, 2019, 141, 19241-19245.	13.7	154
41	Water Oxidation Catalysis by Co(II) Impurities in Co(III) ₄ O ₄ Cubanes. Journal of the American Chemical Society, 2014, 136, 17681-17688.	13.7	152
42	Determination of Organophosphorus and Carbamate Pesticides Using a Piezoelectric Biosensor. Analytical Chemistry, 1998, 70, 2848-2855.	6.5	151
43	Fe/N/C Nanotubes with Atomic Fe Sites: A Highly Active Cathode Catalyst for Alkaline Polymer Electrolyte Fuel Cells. ACS Catalysis, 2017, 7, 6485-6492.	11.2	141
44	<i>In Situ</i> Electron Energy-Loss Spectroscopy in Liquids. Microscopy and Microanalysis, 2013, 19, 1027-1035.	0.4	140
45	In situ synthesis of lithium sulfide–carbon composites as cathode materials for rechargeable lithium batteries. Journal of Materials Chemistry A, 2013, 1, 1433-1440.	10.3	138
46	Synthesis and Characterization of Redox-Active Metal Complexes Sequentially Self-Assembled onto Gold Electrodes via a New Thiolâ^'Terpyridine Ligand. Langmuir, 1996, 12, 4455-4462.	3.5	136
47	Morphology and Activity Tuning of Cu ₃ Pt/C Ordered Intermetallic Nanoparticles by Selective Electrochemical Dealloying. Nano Letters, 2015, 15, 1343-1348.	9.1	131
48	High-Loading Intermetallic Pt ₃ Co/C Core–Shell Nanoparticles as Enhanced Activity Electrocatalysts toward the Oxygen Reduction Reaction (ORR). Chemistry of Materials, 2018, 30, 1532-1539.	6.7	131
49	<i>Operando</i> Methods in Electrocatalysis. ACS Catalysis, 2021, 11, 1136-1178.	11.2	131
50	Highly Stable and CO-Tolerant Pt/Ti _{0.7} W _{0.3} O ₂ Electrocatalyst for Proton-Exchange Membrane Fuel Cells. Journal of the American Chemical Society, 2010, 132, 10218-10220.	13.7	129
51	Precise Adjustment of Nanometric-Scale Diffusion Layers within a Redox Dendrimer Molecule by Ultrafast Cyclic Voltammetry: An Electrochemical Nanometric Microtome. Chemistry - A European Journal, 2001, 7, 2206-2226.	3.3	127
52	Solvent Processable Tetraalkylammonium-Functionalized Polyethylene for Use as an Alkaline Anion Exchange Membrane. Macromolecules, 2010, 43, 7147-7150.	4.8	127
53	Block copolymer derived 3-D interpenetrating multifunctional gyroidal nanohybrids for electrical energy storage. Energy and Environmental Science, 2018, 11, 1261-1270.	30.8	124
54	Mechanistic insights into operational lithium–sulfur batteries by in situ X-ray diffraction and absorption spectroscopy. RSC Advances, 2014, 4, 18347.	3.6	122

HéCTOR ABRUñA

#	Article	IF	CITATIONS
55	Electrodeposition of Redox-Active Films of Dihydroxybenzaldehydes and Related Analogs and Their Electrocatalytic Activity toward NADH Oxidation. Analytical Chemistry, 1996, 68, 3135-3142.	6.5	121
56	<i>In Situ</i> X-ray Absorption Spectroscopy of a Synergistic Co–Mn Oxide Catalyst for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2019, 141, 1463-1466.	13.7	121
57	Mechanistic Insight into the Photocontrolled Cationic Polymerization of Vinyl Ethers. Journal of the American Chemical Society, 2017, 139, 15530-15538.	13.7	120
58	In operando X-ray studies of the conversion reaction in Mn ₃ O ₄ lithium battery anodes. Journal of Materials Chemistry A, 2013, 1, 2094-2103.	10.3	118
59	IrPdRu/C as H ₂ Oxidation Catalysts for Alkaline Fuel Cells. Journal of the American Chemical Society, 2017, 139, 6807-6810.	13.7	117
60	Pt-Decorated Composition-Tunable Pd–Fe@Pd/C Core–Shell Nanoparticles with Enhanced Electrocatalytic Activity toward the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2018, 140, 7248-7255.	13.7	116
61	Intermetallic PtPb Nanoparticles Prepared by Sodium Naphthalide Reduction of Metal-Organic Precursors:  Electrocatalytic Oxidation of Formic Acid. Chemistry of Materials, 2006, 18, 5591-5596.	6.7	111
62	Synthesis, Characterization, and Electrocatalytic Activity of PtBi Nanoparticles Prepared by the Polyol Process. Chemistry of Materials, 2005, 17, 5871-5876.	6.7	109
63	Multifunctional Electrocatalysts: Ru–M (M = Co, Ni, Fe) for Alkaline Fuel Cells and Electrolyzers. ACS Catalysis, 2020, 10, 4608-4616.	11.2	102
64	Key Parameters Governing the Energy Density of Rechargeable Li/S Batteries. Journal of Physical Chemistry Letters, 2014, 5, 882-885.	4.6	101
65	Revealing the atomic ordering of binary intermetallics using in situ heating techniques at multilength scales. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1974-1983.	7.1	98
66	Direct visualization of sulfur cathodes: new insights into Li–S batteries <i>via operando</i> X-ray based methods. Energy and Environmental Science, 2018, 11, 202-210.	30.8	96
67	Copper-Induced Formation of Structurally Ordered Pt–Fe–Cu Ternary Intermetallic Electrocatalysts with Tunable Phase Structure and Improved Stability. Chemistry of Materials, 2018, 30, 5987-5995.	6.7	96
68	Regulating Key Variables and Visualizing Lithium Dendrite Growth: An <i>Operando</i> X-ray Study. Journal of the American Chemical Society, 2019, 141, 8441-8449.	13.7	96
69	Nonprecious transition metal nitrides as efficient oxygen reduction electrocatalysts for alkaline fuel cells. Science Advances, 2022, 8, eabj1584.	10.3	94
70	A rechargeable Na–CO ₂ /O ₂ battery enabled by stable nanoparticle hybrid electrolytes. Journal of Materials Chemistry A, 2014, 2, 17723-17729.	10.3	92
71	Interface-Enhanced Catalytic Selectivity on the C ₂ Products of CO ₂ Electroreduction. ACS Catalysis, 2021, 11, 2473-2482.	11.2	92
72	Synthesis of Intermetallic PtZn Nanoparticles by Reaction of Pt Nanoparticles with Zn Vapor and Their Application as Fuel Cell Catalysts. Chemistry of Materials, 2009, 21, 2661-2667.	6.7	91

HéCTOR ABRUñA

#	Article	IF	CITATIONS
73	Theoretical Studies of Carbonyl-Based Organic Molecules for Energy Storage Applications: The Heteroatom and Substituent Effect. Journal of Physical Chemistry C, 2014, 118, 6046-6051.	3.1	91
74	Synthesis, Characterization, Electrochemistry, and EQCM Studies of Polyamidoamine Dendrimers Surface-Functionalized with Polypyridyl Metal Complexes. Langmuir, 1999, 15, 872-884.	3.5	90
75	A Strategy for Increasing the Efficiency of the Oxygen Reduction Reaction in Mn-Doped Cobalt Ferrites. Journal of the American Chemical Society, 2019, 141, 4412-4421.	13.7	90
76	Ultrafast Voltammetry of Adsorbed Redox Active Dendrimers with Nanometric Resolution: An Electrochemical Microtome. ChemPhysChem, 2001, 2, 130-134.	2.1	87
77	Enhancement of the Oxygen Reduction Reaction Activity of Pt by Tuning Its <i>d</i> -Band Center via Transition Metal Oxide Support Interactions. ACS Catalysis, 2021, 11, 9317-9332.	11.2	87
78	Cationâ€Dependent Stabilization of Electrogenerated Naphthalene Diimide Dianions in Porous Polymer Thin Films and Their Application to Electrical Energy Storage. Angewandte Chemie - International Edition, 2015, 54, 13225-13229.	13.8	86
79	Identical Location Transmission Electron Microscopy Imaging of Site-Selective Pt Nanocatalysts: Electrochemical Activation and Surface Disordering. Journal of the American Chemical Society, 2015, 137, 14992-14998.	13.7	85
80	Golden Palladium Zinc Ordered Intermetallics as Oxygen Reduction Electrocatalysts. ACS Nano, 2019, 13, 5968-5974.	14.6	83
81	Synergistic Bimetallic Metallic Organic Framework-Derived Pt–Co Oxygen Reduction Electrocatalysts. ACS Nano, 2020, 14, 13069-13080.	14.6	82
82	Sulfur encapsulation by MOF-derived CoS ₂ embedded in carbon hosts for high-performance Li–S batteries. Journal of Materials Chemistry A, 2019, 7, 21128-21139.	10.3	79
83	High-Loading Composition-Tolerant Co–Mn Spinel Oxides with Performance beyond 1 W/cm ² in Alkaline Polymer Electrolyte Fuel Cells. ACS Energy Letters, 2019, 4, 1251-1257.	17.4	77
84	Strain and Charge Doping Fingerprints of the Strong Interaction between Monolayer MoS ₂ and Gold. Journal of Physical Chemistry Letters, 2020, 11, 6112-6118.	4.6	77
85	Mechanistic Studies of Formate Oxidation on Platinum in Alkaline Medium. Journal of Physical Chemistry C, 2012, 116, 5810-5820.	3.1	76
86	Photophysical properties of tris(bipyridyl)ruthenium(ii) thin films and devices. Physical Chemistry Chemical Physics, 2003, 5, 2706-2709.	2.8	75
87	Tailoring the Antipoisoning Performance of Pd for Formic Acid Electrooxidation via an Ordered PdBi Intermetallic. ACS Catalysis, 2020, 10, 9977-9985.	11.2	75
88	Enhancing the Electrocatalytic Activity of Pd/M (M = Ni, Mn) Nanoparticles for the Oxygen Reduction Reaction in Alkaline Media through Electrochemical Dealloying. ACS Catalysis, 2020, 10, 5891-5898.	11.2	74
89	Systematic Optimization of Battery Materials: Key Parameter Optimization for the Scalable Synthesis of Uniform, High-Energy, and High Stability LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ Cathode Material for Lithium on Batteries, ACS Applied Materials & app: Interfaces, 2017, 9, 25811, 25819	8.0	73
90	Direct Observation of Electrocatalytic Synergy. Journal of the American Chemical Society, 2007, 129, 11033-11035.	13.7	72

#	Article	IF	CITATIONS
91	Coalescence in the Thermal Annealing of Nanoparticles: An in Situ STEM Study of the Growth Mechanisms of Ordered Pt–Fe Nanoparticles in a KCl Matrix. Chemistry of Materials, 2013, 25, 1436-1442.	6.7	72
92	The Study of Solid/Liquid Interfaces with X-ray Standing Waves. Science, 1990, 250, 69-74.	12.6	68
93	Controlled Selectivity of CO ₂ Reduction on Copper by Pulsing the Electrochemical Potential. ChemSusChem, 2018, 11, 1781-1786.	6.8	68
94	Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction. Nature Communications, 2016, 7, 11941.	12.8	67
95	Scalable Synthesis of Ultrathin Mn ₃ N ₂ Exhibiting Roomâ€Temperature Antiferromagnetism. Advanced Functional Materials, 2019, 29, 1809001.	14.9	67
96	Structural Effects on the Oxidation of HCOOH by Bismuth-Modified Pt(111) Electrodes with (100) Monatomic Steps. Langmuir, 1999, 15, 7325-7332.	3.5	65
97	Magnetic tunnel junctions with single-layer-graphene tunnel barriers. Physical Review B, 2014, 89, .	3.2	65
98	Enhanced ORR Kinetics on Au-Doped Pt–Cu Porous Films in Alkaline Media. ACS Catalysis, 2020, 10, 9967-9976.	11.2	65
99	Cobalt-electrocatalytic HAT for functionalization of unsaturated C–C bonds. Nature, 2022, 605, 687-695.	27.8	65
100	Ordered Arrays Generated via Metal-Initiated Self-Assembly of Terpyridine Containing Dendrimers and Bridging Ligands. Langmuir, 1999, 15, 7351-7354.	3.5	64
101	Electrocatalytic mechanism and kinetics of SOMs oxidation on ordered PtPb and PtBi intermetallic compounds: DEMS and FTIRS study. Physical Chemistry Chemical Physics, 2008, 10, 3739.	2.8	64
102	Structure of the Photo-catalytically Active Surface of SrTiO ₃ . Journal of the American Chemical Society, 2016, 138, 7816-7819.	13.7	64
103	Kinetic Enhancement of Sulfur Cathodes by Nâ€Đoped Porous Graphitic Carbon with Bound VN Nanocrystals. Small, 2020, 16, e2004950.	10.0	64
104	Phenothiazine-Based Polymer Cathode Materials with Ultrahigh Power Densities for Lithium Ion Batteries. ACS Applied Energy Materials, 2018, 1, 3560-3564.	5.1	63
105	Combinatorial Studies of Palladium-Based Oxygen Reduction Electrocatalysts for Alkaline Fuel Cells. Journal of the American Chemical Society, 2020, 142, 3980-3988.	13.7	63
106	Electrochemical Hydrogen Evolution at Ordered Mo ₇ Ni ₇ . ACS Catalysis, 2017, 7, 3375-3383.	11.2	62
107	Modular terpene synthesis enabled by mild electrochemical couplings. Science, 2022, 375, 745-752.	12.6	62
108	High-Performance Ga ₂ O ₃ Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 5519-5526.	8.0	60

#	Article	IF	CITATIONS
109	Octahedral spinel electrocatalysts for alkaline fuel cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24425-24432.	7.1	60
110	Adsorption of CO on PtBi2 and PtBi surfaces. Surface Science, 2005, 574, 1-16.	1.9	59
111	High throughput screening of electrocatalysts for fuel cell applications. Review of Scientific Instruments, 2006, 77, 054104.	1.3	59
112	Tailored redox functionality of small organics for pseudocapacitive electrodes. Energy and Environmental Science, 2012, 5, 7176.	30.8	58
113	Organic light-emitting devices with laminated top contacts. Applied Physics Letters, 2004, 84, 3675-3677.	3.3	57
114	Methanol Electrooxidation on PtRu Bulk Alloys and Carbon-Supported PtRu Nanoparticle Catalysts: A Quantitative DEMS Study. Langmuir, 2009, 25, 7725-7735.	3.5	57
115	A completely precious metal–free alkaline fuel cell with enhanced performance using a carbon-coated nickel anode. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119883119.	7.1	54
116	Structural effects on the oxidation of HCOOH by bismuth modified Pt(111) electrodes with (110) monatomic steps. Journal of Electroanalytical Chemistry, 1999, 467, 43-49.	3.8	52
117	Electrochemistry within molecules using ultrafast cyclic voltammetry. Comptes Rendus Chimie, 2003, 6, 99-115.	0.5	52
118	Self-Poisoning during BH ₄ [–] Oxidation at Pt and Au, and in Situ Poison Removal Procedures for BH ₄ [–] Fuel Cells. Journal of Physical Chemistry C, 2013, 117, 1571-1581.	3.1	52
119	Solar energy conversion, storage, and release using an integrated solar-driven redox flow battery. Journal of Materials Chemistry A, 2017, 5, 5362-5372.	10.3	52
120	Is there any beam yet? Uses of synchrotron radiation in the in situ study of electrochemical interfaces. The Journal of Physical Chemistry, 1988, 92, 7045-7052.	2.9	51
121	Contact issues in electroluminescent devices from ruthenium complexes. Applied Physics Letters, 2004, 84, 807-809.	3.3	50
122	Poly[dithio-2,5-(1,3,4-thiadiazole)] (PDMcT)–poly(3,4-ethylenedioxythiophene) (PEDOT) composite cathode for high-energy lithium/lithium-ion rechargeable batteries. Journal of Power Sources, 2007, 173, 522-530.	7.8	49
123	Operating mechanism of light-emitting electrochemical cells. Nature Materials, 2008, 7, 168-168.	27.5	49
124	Activity–Stability Relationship in Au@Pt Nanoparticles for Electrocatalysis. ACS Energy Letters, 2020, 5, 2827-2834.	17.4	49
125	Electrochemically Controlled Adhesion in Atomic Force Spectroscopy. Journal of the American Chemical Society, 1996, 118, 6303-6304.	13.7	48
126	Elucidation of the Redox Behavior of 2,5-Dimercapto-1,3,4-thiadiazole (DMcT) at Poly(3,4-ethylenedioxythiophene) (PEDOT)-Modified Electrodes and Application of the DMcTâ^'PEDOT Composite Cathodes to Lithium/Lithium Ion Batteries. Langmuir, 2006, 22, 10554-10563.	3.5	48

#	Article	IF	CITATIONS
127	Dynamic Hosts for High-Performance Li–S Batteries Studied by Cryogenic Transmission Electron Microscopy and in Situ X-ray Diffraction. ACS Energy Letters, 2018, 3, 1325-1330.	17.4	47
128	Direct 120V, 60Hz operation of an organic light emitting device. Journal of Applied Physics, 2006, 99, 074502.	2.5	46
129	Energy-Level-Related Response of Cathodic Electrogenerated-Chemiluminescence of Self-Assembled CdSe/ZnS Quantum Dot Films. Journal of Physical Chemistry C, 2011, 115, 18822-18828.	3.1	45
130	Rh and Rh Alloy Nanoparticles as Highly Active H ₂ Oxidation Catalysts for Alkaline Fuel Cells. ACS Catalysis, 2019, 9, 5057-5062.	11.2	45
131	Methanol Oxidation Using Ternary Ordered Intermetallic Electrocatalysts: A DEMS Study. ACS Catalysis, 2020, 10, 770-776.	11.2	45
132	New Double-Band-Electrode Channel Flow Differential Electrochemical Mass Spectrometry Cell: Application for Detecting Product Formation during Methanol Electrooxidation. Analytical Chemistry, 2010, 82, 4319-4324.	6.5	44
133	Synthesis and Photoelectrochemistry of Polycrystalline Thin Films of p â€â€‰WSe2, p â€â€‰â€‰WSá Journal of the Electrochemical Society, 1988, 135, 1436-1442.	à€‰2, an 2.9	d pậ€‰â€â 43
134	Synthesis and Characterization of Zirconium and Iron Complexes Containing Substituted Indenyl Ligands:Â Evaluation of Steric and Electronic Parameters. Organometallics, 2004, 23, 5332-5346.	2.3	43
135	An Electrochemical Quartz Crystal Microbalance Study of a Prospective Alkaline Anion Exchange Membrane Material for Fuel Cells: Anion Exchange Dynamics and Membrane Swelling. Journal of the American Chemical Society, 2014, 136, 5309-5322.	13.7	43
136	Organic electrode materials for fast-rate, high-power battery applications. Materials Reports Energy, 2021, 1, 100008.	3.2	43
137	Nanomaterial datasets to advance tomography in scanning transmission electron microscopy. Scientific Data, 2016, 3, 160041.	5.3	42
138	Electrochemiluminescence of Osmium Complexes: Spectral, Electrochemical, and Mechanistic Studies. Journal of the Electrochemical Society, 1985, 132, 842-849.	2.9	41
139	Synthesis of carbon supported ordered tetragonal pseudo-ternary Pt2M′M″ (MÂ=ÂFe, Co, Ni) nanoparticles and their activity for oxygen reduction reaction. Journal of Power Sources, 2015, 280, 459-466.	7.8	41
140	Crossâ€linking Effects on Performance Metrics of Phenazineâ€Based Polymer Cathodes. ChemSusChem, 2020, 13, 2428-2435.	6.8	41
141	Thermodynamics and Kinetics of Adsorption of Poly(amido amine) Dendrimers Surface Functionalized with Ruthenium(II) Complexes. Langmuir, 1999, 15, 7333-7339.	3.5	40
142	Effects of the Electrolyte Identity and the Presence of Anions on the Redox Behavior of Irreversibly Adsorbed Bismuth on Pt(111). Journal of Physical Chemistry B, 1998, 102, 3506-3511.	2.6	39
143	Observation of intermediate-range order in a nominally amorphous molecular semiconductor film. Journal of Materials Chemistry, 2007, 17, 1458-1461.	6.7	39
144	Semiperfluoroalkyl Polyfluorenes for Orthogonal Processing in Fluorous Solvents. Macromolecules, 2010, 43, 1195-1198.	4.8	39

#	Article	IF	CITATIONS
145	Underpotential Deposition of Mercury on Au(111):  Electrochemical Studies and Comparison with Structural Investigations. Langmuir, 1997, 13, 4446-4453.	3.5	38
146	Poison Formation upon the Dissociative Adsorption of Formic Acid on Bismuth-Modified Stepped Platinum Electrodes. Langmuir, 2000, 16, 787-794.	3.5	38
147	Probing Diffusional Transport in Redox-Active Dendrimers. Journal of Physical Chemistry B, 2002, 106, 8504-8513.	2.6	38
148	In situ identification of a luminescence quencher in an organic light-emitting device. Journal of Materials Chemistry, 2007, 17, 76-81.	6.7	38
149	The Mechanism of the Oneâ€Step Synthesis of Hollowâ€Structured Li ₃ VO ₄ as an Anode for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2014, 20, 5608-5612.	3.3	38
150	Origin of Multiple Peaks in the Potentiodynamic Oxidation of CO Adlayers on Pt and Ru-Modified Pt Electrodes. Journal of Physical Chemistry Letters, 2015, 6, 1899-1906.	4.6	38
151	Electrochemically Triggered Reaction of a Surface-Confined Reagent:  Mechanistic and EQCM Characterization of Redox-Active Self-Assembling Monolayers Derived from 5,5â€~Dithiobis(2-nitrobenzoic acid) and Related Materials. Langmuir, 1999, 15, 127-134.	3.5	37
152	Electrochemical DNA sensing based on gold nanoparticle amplification. Analytical and Bioanalytical Chemistry, 2005, 381, 833-838.	3.7	37
153	STM and ECSTM Study of the Formation and Structure of Self-Assembling Osmium Complexes on Pt(111). The Journal of Physical Chemistry, 1996, 100, 1036-1042.	2.9	36
154	Breaking the Crowther limit: Combining depth-sectioning and tilt tomography for high-resolution, wide-field 3D reconstructions. Ultramicroscopy, 2014, 140, 26-31.	1.9	35
155	Poly(2,5â€dimercaptoâ€1,3,4â€thiadiazole) as a Cathode for Rechargeable Lithium Batteries with Dramatically Improved Performance. Chemistry - A European Journal, 2012, 18, 8521-8526.	3.3	34
156	Cascaded light-emitting devices based on a ruthenium complex. Applied Physics Letters, 2004, 84, 4980-4982.	3.3	33
157	New Insights into the Mechanism and Kinetics of Adsorbed CO Electrooxidation on Platinum: Online Mass Spectrometry and Kinetic Monte Carlo Simulation Studies. Journal of Physical Chemistry C, 2012, 116, 11040-11053.	3.1	33
158	Atomicâ€Scale Visualization of Electrochemical Lithiation Processes in Monolayer MoS ₂ by Cryogenic Electron Microscopy. Advanced Energy Materials, 2019, 9, 1902773.	19.5	33
159	Designing conducting polymer films for electrochemical energy storage technologies. RSC Advances, 2013, 3, 1957-1964.	3.6	32
160	Phases of Underpotentially Deposited Hg on Au(111):  An in Situ Surface X-ray Diffraction Study. Journal of Physical Chemistry B, 1997, 101, 2907-2916.	2.6	31
161	Getter sputtering system for high-throughput fabrication of composition spreads. Review of Scientific Instruments, 2007, 78, 072212.	1.3	31
162	Exchange Dynamics of Redox-Active Self-Assembling Mixed Monolayers. The Journal of Physical Chemistry, 1996, 100, 4556-4563.	2.9	30

#	Article	IF	CITATIONS
163	The effect of alloying of transition metals (MÂ= Fe, Co, Ni) with palladium catalysts on the electrocatalytic activity for the oxygen reduction reaction in alkaline media. Electrochimica Acta, 2018, 283, 1045-1052.	5.2	30
164	Coadsorption of Sulfate/Bisulfate Anions with Hg Cations during Hg Underpotential Deposition on Au(111):Â An in Situ X-ray Diffraction Study. Journal of Physical Chemistry B, 1997, 101, 244-252.	2.6	29
165	Thermodynamic, Kinetic, Surface p <i>K</i> _a , and Structural Aspects of Self-Assembled Monolayers of Thio Compounds on Gold. Langmuir, 2012, 28, 17825-17831.	3.5	29
166	Improved Fuel Cell Oxidation Catalysis in Pt _{1â~'<i>x</i>} Ta _{<i>x</i>} . Chemistry of Materials, 2010, 22, 1080-1087.	6.7	28
167	SnS/C nanocomposites for high-performance sodium ion battery anodes. RSC Advances, 2018, 8, 23847-23853.	3.6	28
168	Application of differential electrochemical mass spectrometry to the electrocatalytic oxidation of formic acid at a modified Bi/Pt electrode surface. Journal of Solid State Electrochemistry, 2003, 7, 582-587.	2.5	27
169	Peer Reviewed: Redox and Photoactive Dendrimers in Solution and on Surfaces. Analytical Chemistry, 2004, 76, 310 A-319 A.	6.5	27
170	Oxidative Stability Matters: A Case Study of Palladium Hydride Nanosheets for Alkaline Fuel Cells. Journal of the American Chemical Society, 2022, 144, 8106-8114.	13.7	27
171	A high-throughput search for direct methanol fuel cell anode electrocatalysts of type PtxBiyPbz. Applied Surface Science, 2007, 254, 653-661.	6.1	26
172	X-ray and Electrochemical Studies of Cu UPD on Au(111) Single-Crystal Electrodes in the Presence of Bromide. Journal of Physical Chemistry B, 1998, 102, 9825-9833.	2.6	25
173	Synthesis, computational and electrochemical characterization of a family of functionalized dimercaptothiophenes for potential use as high-energy cathode materials for lithium/lithium-ion batteries. Journal of Materials Chemistry, 2007, 17, 4366.	6.7	24
174	Uniform lithium deposition on N-doped carbon-coated current collectors. Chemical Communications, 2019, 55, 10124-10127.	4.1	24
175	Ni-rich LiNi0.88Mn0.06Co0.06O2 cathode interwoven by carbon fiber with improved rate capability and stability. Journal of Power Sources, 2020, 447, 227344.	7.8	24
176	An Innovative Lithium Ion Battery System Based on a Cu ₂ S Anode Material. ACS Applied Materials & Interfaces, 2020, 12, 17396-17405.	8.0	24
177	Towards organic energy storage: characterization of 2,5-bis(methylthio)thieno[3,2-b]thiophene. Journal of Materials Chemistry, 2011, 21, 9553.	6.7	23
178	Hydroxyl Radical Generation and DNA Nuclease Activity: A Mechanistic Study Based on a Surfaceâ€Immobilized Copper Thioether Clipâ€Phen Derivative. Chemistry - A European Journal, 2016, 22, 10081-10089.	3.3	23
179	Porous Fe ₃ O ₄ Nanospheres as Effective Sulfur Hosts for Li-S Batteries. Journal of the Electrochemical Society, 2018, 165, A1656-A1661.	2.9	23
180	Effect of Structural Ordering on the Charge Storage Mechanism of p-Type Organic Electrode Materials. ACS Applied Materials & Interfaces, 2021, 13, 7135-7141.	8.0	23

#	Article	IF	CITATIONS
181	Optimizing accuracy and efficacy in data-driven materials discovery for the solar production of hydrogen. Energy and Environmental Science, 2021, 14, 2335-2348.	30.8	23
182	The Effects of Organic Adsorbates on the Underpotential Deposition of Silver on Pt(111) Electrodes. Journal of the Electrochemical Society, 1993, 140, 3402-3409.	2.9	22
183	Theoretical and Electrochemical Analysis of Poly(3,4-alkylenedioxythiophenes): Electron-Donating Effects and Onset of p-Doped Conductivity. Journal of Physical Chemistry C, 2010, 114, 16776-16784.	3.1	21
184	Electrocatalysis of Direct Alcohol Fuel Cells: Quantitative DEMS Studies. Structure and Bonding, 2011, , 33-83.	1.0	21
185	Synthesis and Characterization of Poly-3,4-ethylenedioxythiophene/2,5-Dimercapto-1,3,4-thiadiazole (PEDOT-DMcT) Hybrids. Electrochimica Acta, 2015, 167, 55-60.	5.2	21
186	Kinetic Stabilization of Ordered Intermetallic Phases as Fuel Cell Anode Materials. Journal of Physical Chemistry C, 2010, 114, 14929-14938.	3.1	20
187	Ultrahigh Rate Performance of a Robust Lithium Nickel Manganese Cobalt Oxide Cathode with Preferentially Orientated Li-Diffusing Channels. ACS Applied Materials & Interfaces, 2019, 11, 41178-41187.	8.0	20
188	Visualization of Sodium Metal Anodes via <i>Operando</i> X-Ray and Optical Microscopy: Controlling the Morphological Evolution of Sodium Metal Plating. ACS Applied Materials & Interfaces, 2022, 14, 10438-10446.	8.0	20
189	Electronic Effects in CO Chemisorption on Ptâ^'Pb Intermetallic Surfaces:  A Theoretical Study. Journal of Physical Chemistry C, 2007, 111, 17357-17369.	3.1	19
190	Regulating lithium nucleation and growth by zinc modified current collectors. Nano Research, 2020, 13, 45-51.	10.4	19
191	Performance optimization and fast rate capabilities of novel polymer cathode materials through balanced electronic and ionic transport. Journal of Materials Chemistry A, 2021, 9, 5657-5663.	10.3	19
192	PtPb nanoparticle electrocatalysts: control of activity through synthetic methods. Journal of Nanoparticle Research, 2009, 11, 965-980.	1.9	17
193	The Co-Adsorption of UPD Copper and Irreversibly Adsorbed Bismuth on Pt(111) and Pt(100) Electrodes. Journal of Physical Chemistry B, 1999, 103, 6764-6769.	2.6	16
194	Alternative Oxidants for High-Power Fuel Cells Studied by Rotating Disk Electrode (RDE) Voltammetry at Pt, Au, and Glassy Carbon Electrodes. Journal of Physical Chemistry C, 2011, 115, 6073-6084.	3.1	16
195	High Throughput Thin Film Pt-M Alloys for Fuel Electrooxidation: Low Concentrations of M (M = Sn,) Tj ETQq1 1 159, F880-F887.	0.784314 2.9	rgBT /Overloc 16
196	Electron Tunneling through Boron Nitride Confirms Marcus–Hush Theory Predictions for Ultramicroelectrodes. ACS Nano, 2020, 14, 993-1002.	14.6	16
197	Competitive nucleation and growth behavior in Li–Se batteries. Energy and Environmental Science, 2022, 15, 1493-1502.	30.8	16
198	X-ray Standing Waves and Surface EXAFS Studies of Electrochemical Interfaces. Accounts of Chemical Research, 1995, 28, 273-279.	15.6	15

#	Article	IF	CITATIONS
199	Nucleation and Ordering of an Electrodeposited Two-Dimensional Crystal: Real-Time X-Ray Scattering and Electronic Measurements. Physical Review Letters, 1998, 81, 3459-3462.	7.8	15
200	Electrochemical Energy Generation and Storage. Fuel Cells and Lithium-Ion Batteries. Bulletin of the Chemical Society of Japan, 2007, 80, 1843-1855.	3.2	15
201	Rock-Salt-Type MnCo ₂ O ₃ /C as Efficient Oxygen Reduction Electrocatalysts for Alkaline Fuel Cells. Chemistry of Materials, 2019, 31, 9331-9337.	6.7	15
202	The Intricate Love Affairs between MoS ₂ and Metallic Substrates. Advanced Materials Interfaces, 2020, 7, 2001324.	3.7	15
203	Understanding the Impacts of Li Stripping Overpotentials at the Counter Electrode by Three-Electrode Coin Cell Measurements. Analytical Chemistry, 2021, 93, 15459-15467.	6.5	15
204	Photophysics of PAMAM-Based Dendrimers of Polypyridyl Complexes of Ruthenium. Journal of Physical Chemistry B, 2002, 106, 9993-10003.	2.6	14
205	The Sodium–Oxygen/Carbon Dioxide Electrochemical Cell. ChemSusChem, 2016, 9, 1600-1606.	6.8	14
206	Lithium–sulfur redox: challenges and opportunities. Current Opinion in Electrochemistry, 2021, 25, 100652.	4.8	14
207	Organic Electroanalysis with Chemically Modified Electrodes. Analytical Letters, 1986, 19, 1613-1632.	1.8	13
208	The Effects of Organic Adsorbates on the Underpotential and Bulk Deposition of Silver on Polycrystalline Platinum Electrodes. Journal of the Electrochemical Society, 1994, 141, 3394-3403.	2.9	13
209	Anion Effects on the Kinetics of Mercury Underpotential Deposition on Au(111) Electrodes. Journal of Physical Chemistry B, 1998, 102, 444-451.	2.6	13
210	Fabrication and surface characterization of single crystal PtBi and PtPb (100) and (001) surfaces. Physical Chemistry Chemical Physics, 2010, 12, 12978.	2.8	13
211	Single-phase Ru1â~'â~'Mn Co O2 nanoparticles as highly effective oxygen reduction electrocatalysts in alkaline media with enhanced stability and fuel-tolerance. Applied Catalysis B: Environmental, 2020, 277, 119149.	20.2	13
212	Stereoselective Processes at Electrodes Modified with a Cholesteric Liquid Crystal. Journal of the Electrochemical Society, 1989, 136, 113-119.	2.9	12
213	High power organic cathodes using thin films of electropolymerized benzidine polymers. Chemical Communications, 2015, 51, 14674-14677.	4.1	12
214	Methanol Oxidation at Platinum in Alkaline Media: A Study of the Effects of Hydroxide Concentration and of Mass Transport. ChemPhysChem, 2021, 22, 1397-1406.	2.1	12
215	Conjugated Microporous Polymers via Solvent-Free Ionothermal Cyclotrimerization of Methyl Ketones. Chemistry of Materials, 2021, 33, 8334-8342.	6.7	12
216	Enzymatic Activity of a Phospholipase A2:  An Electrochemical Approach. Langmuir, 1997, 13, 5969-5973.	3.5	11

#	Article	IF	CITATIONS
217	Energy in the Age of Sustainability. Journal of Chemical Education, 2013, 90, 1411-1413.	2.3	11
218	Investigation of ion-electrode interactions of linear polyimides and alkali metal ions for next generation alternative-ion batteries. Chemical Science, 2022, 13, 9191-9201.	7.4	11
219	Electrochemistry in Liquid Crystals: Orientational Effects in Electrochemical Processes. Journal of the Electrochemical Society, 1986, 133, 2226-2232.	2.9	10
220	In situ monitoring of electrochemically induced roughening with the crystal truncation rod technique. The Journal of Physical Chemistry, 1992, 96, 3416-3419.	2.9	10
221	Surface characterization of ordered intermetallic PtBi(001) surfaces by ultra-high vacuum–electrochemistry (UHV–EC). Surface Science, 2008, 602, 1830-1836.	1.9	10
222	In situ electrochemical characterization of poly-3,4-ethylenedioxythiophene/tetraalkylphenylene diamine films and their potential use in electrochemical energy storage devices. Journal of Electroanalytical Chemistry, 2016, 765, 65-72.	3.8	10
223	Rotating Disk Electrode Voltammetry of Thin Films of Novel Oxide Materials. Journal of the Electrochemical Society, 2017, 164, H1154-H1160.	2.9	10
224	In Situ Quartz Crystal Microbalance Study of Self-Assembly and Mass Transfer Processes of a Redox-Active Osmium Complex. The Journal of Physical Chemistry, 1996, 100, 17909-17914.	2.9	9
225	Polymer Brushes as Functional, Patterned Surfaces for Nanobiotechnology. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2012, 25, 53-56.	0.3	9
226	An exchangeable-tip scanning probe instrument for the analysis of combinatorial libraries of electrocatalysts. Review of Scientific Instruments, 2013, 84, 024101.	1.3	9
227	Electrolyte screening studies for Li metal batteries. Chemical Communications, 2020, 56, 11883-11886.	4.1	9
228	Designing Synergistic Electrocatalysts for H ₂ Oxidation and Evolution Reactions in Alkaline Media. Journal of Physical Chemistry C, 2021, 125, 7188-7203.	3.1	9
229	Epitaxial Thin-Film Spinel Oxides as Oxygen Reduction Electrocatalysts in Alkaline Media. Chemistry of Materials, 2021, 33, 4006-4013.	6.7	9
230	A Mechanistic Differential Electrochemical Mass Spectrometry (DEMS) and in situ Fourier Transform Infrared Investigation of Dimethoxymethane Electro-Oxidation at Platinum. Journal of Physical Chemistry C, 2011, 115, 13293-13302.	3.1	8
231	Rapid hydrothermal synthesis of Li3VO4 with different favored facets. Journal of Solid State Electrochemistry, 2017, 21, 2547-2553.	2.5	8
232	Surface Roughness-Independent Homogeneous Lithium Plating in Synergetic Conditioned Electrolyte. ACS Energy Letters, 2022, 7, 2219-2227.	17.4	8
233	Xâ€ray Fluorescence Investigation of Ordered Intermetallic Phases as Electrocatalysts towards the Oxidation of Small Organic Molecules. Chemistry - A European Journal, 2010, 16, 13689-13697.	3.3	7
234	Elucidation of the electrochemical behavior of phenothiazine-based polyaromatic amines. Tetrahedron, 2019, 75, 4244-4249.	1.9	7

#	Article	IF	CITATIONS
235	La-Based Perovskite Oxide Catalysts for Alkaline Oxygen Reduction: The Importance of Electrochemical Stability. Journal of Physical Chemistry C, 2022, 126, 3098-3108.	3.1	7
236	Metal Monolayers on Command: Underpotential Deposition at Nanocrystal Surfaces: A Quantitative <i>Operando</i> Electrochemical Transmission Electron Microscopy Study. ACS Energy Letters, 2022, 7, 1292-1297.	17.4	7
237	Reactions of Phospholipase A2at a Mercury Electrode Surface. Journal of Physical Chemistry B, 1997, 101, 167-174.	2.6	6
238	Hybrid Organic Electrodes: The Rational Design and Synthesis of High-Energy Redox-Active Pendant Functionalized Polypyrroles for Electrochemical Energy Storage. Journal of the Electrochemical Society, 2017, 164, A1946-A1951.	2.9	6
239	<i>Operando</i> Synchrotron-Based X-ray Study of Prussian Blue and Its Analogue as Cathode Materials for Sodium-Ion Batteries. Journal of Physical Chemistry C, 2020, 124, 16332-16337.	3.1	6
240	New insights into methanol and formic acid electro-oxidation on Pt: Simultaneous DEMS and ATR-SEIRAS study under well-defined flow conditions and simulations of CO spectra. Journal of Chemical Physics, 2022, 156, 034703.	3.0	6
241	Structural studies of electrochemical interfaces with x rays. Review of Scientific Instruments, 1989, 60, 2529-2532.	1.3	5
242	Influence of Organic Adsorbates on the Under- and Overpotential Deposition of Copper on Gold Electrodes. Zeitschrift Fur Physikalische Chemie, 1999, 210, 15-43.	2.8	5
243	Operando Methods for the Mechanistic Elucidation of an Electrochemically Driven Structural Transformation. Journal of Physical Chemistry C, 2018, 122, 12377-12383.	3.1	5
244	Anion Exchange and Water Dynamics in a Phosphonium-Based Alkaline Anion Exchange Membrane Material for Fuel Cells: An Electrochemical Quartz Crystal Microbalance Study. ACS Applied Materials & Interfaces, 2021, 13, 10979-10986.	8.0	5
245	In Situ TEM for Quantitative Electrochemistry of Energy Systems. Microscopy and Microanalysis, 2015, 21, 1509-1510.	0.4	4
246	Modification of Gold's Work Function upon Adsorption of Mercaptobiphenylcarbonitrile: Experimental Evidence for a Theoretical Prediction. Journal of Physical Chemistry C, 2018, 122, 6083-6092.	3.1	4
247	Elucidating Cathodic Corrosion Mechanisms with Operando Electrochemical Liquid-Cell STEM in Multiple Dimensions. Microscopy and Microanalysis, 2021, 27, 238-240.	0.4	4
248	Scanning Tunneling Microscopy of Molecular Adsorbates. Comments on Inorganic Chemistry, 1994, 15, 171-196.	5.2	3
249	Rediscovering Cr2O72–, an Oxidant with Unrivaled Power and Energy Density, for Affordable, Next-Generation Energy Storage and Conversion. ACS Energy Letters, 2017, 2, 1439-1443.	17.4	3
250	Grains and Strains from Cepstral Analysis of 4D-STEM Nano-Diffraction Datasets. Microscopy and Microanalysis, 2018, 24, 546-547.	0.4	3
251	Relaxation of asymmetric crystallographic tilt: <i>In situ</i> x-ray diffraction studies of epitaxial electrodeposition of bismuth on GaAs (110). Journal of Applied Physics, 2018, 124, .	2.5	3
252	Cryo-STEM-EDX for Reliable Characterization of Sulfur Distribution and the Rational Design of Sulfur Hosts for Li-S Batteries. Microscopy and Microanalysis, 2020, 26, 1654-1658.	0.4	3

#	Article	IF	CITATIONS
253	Rate and Mechanism of Electrochemical Formation of Surface-Bound Hydrogen on Pt(111) Single Crystals. Journal of Physical Chemistry Letters, 2022, 13, 6383-6390.	4.6	3
254	Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of a Battery Electrode and Electrolyte. Microscopy and Microanalysis, 2014, 20, 1524-1525.	0.4	2
255	Electrocatalysis: Kinetic Enhancement of Sulfur Cathodes by Nâ€Đoped Porous Graphitic Carbon with Bound VN Nanocrystals (Small 48/2020). Small, 2020, 16, 2070261.	10.0	2
256	<i>Ex Situ</i> and <i>In Situ</i> Analyses of the Mechanism of Electrocatalytic Hydrogen Peroxide Production by Co _{<i>x</i>} Zn _{1–<i>x</i>} O (0 < <i>x</i> < 0.018) Materials in Alkaline Media. ACS Applied Energy Materials, 2022, 5, 6597-6605.	5.1	2
257	Conductivity Studies of Metal Coordination Polymers of Cobalt, Iron, Ruthenium, and Osmium Vinylbipyridine Complexes. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 1988, 160, 377-388.	0.3	1
258	Introduction to <i>ACS Catalysis'</i> Special Issue on Electrocatalysis. ACS Catalysis, 2012, 2, 899-900.	11.2	1
259	Quantifying the Atomic Ordering of Binary Intermetallic Nanocatalysts Using In Situ Heating STEM and XRD. Microscopy and Microanalysis, 2019, 25, 1488-1489.	0.4	1
260	Editorial: Advances in Functional Electrodes. Electrochemistry, 2019, 87, 107-107.	1.4	1
261	Advances in Cryo-Electron Microscopy for Understanding Energy Materials. Microscopy and Microanalysis, 2020, 26, 1648-1650.	0.4	1
262	Electrochemical Screening of Metallic Oxygen Reduction Reaction Catalyst Thin Films Using Getter Cosputtering. ACS Combinatorial Science, 2020, 22, 339-347.	3.8	1
263	A channel flow cell with double disk electrodes for oxygen electroreduction study at elevated temperatures and pressures: Theory. Journal of Electroanalytical Chemistry, 2021, 896, 115251.	3.8	1
264	Managing gas and ion transport in a PTFE fiber-based architecture for alkaline fuel cells. Cell Reports Physical Science, 2022, 3, 100912.	5.6	1
265	In Situ Surface Extended X-ray Absorption Fine Structure at Chemically Modified Electrodes. ACS Symposium Series, 1988, , 216-232.	0.5	0
266	Time-Resolved Measurements of Overlayer Ordering in Electrodeposition. Materials Research Society Symposia Proceedings, 1996, 451, 49.	0.1	0
267	Degradation of Ru(bpy)32+-based OLEDs. Materials Research Society Symposia Proceedings, 2004, 846, DD11.11.1.	0.1	0
268	In Situ TEM for Electrochemical Energy Storage and Conversion Systems. Microscopy and Microanalysis, 2016, 22, 1326-1327.	0.4	0
269	In Situ Electrochemical Cell TEM for Battery and Fuel Cell Systems. Microscopy and Microanalysis, 2016, 22, 752-753.	0.4	0