
Jia Xu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4285951/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxygen Reduction on Well-Defined Coreâ^'Shell Nanocatalysts: Particle Size, Facet, and Pt Shell Thickness Effects. Journal of the American Chemical Society, 2009, 131, 17298-17302.	13.7	688
2	Coreâ€Protected Platinum Monolayer Shell Highâ€Stability Electrocatalysts for Fuelâ€Cell Cathodes. Angewandte Chemie - International Edition, 2010, 49, 8602-8607.	13.8	554
3	Kirkendall Effect and Lattice Contraction in Nanocatalysts: A New Strategy to Enhance Sustainable Activity. Journal of the American Chemical Society, 2011, 133, 13551-13557.	13.7	255
4	Ordered bilayer ruthenium–platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts. Nature Communications, 2013, 4, 2466.	12.8	200
5	Elucidating Hydrogen Oxidation/Evolution Kinetics in Base and Acid by Enhanced Activities at the Optimized Pt Shell Thickness on the Ru Core. ACS Catalysis, 2015, 5, 6764-6772.	11.2	197
6	Double-Trap Kinetic Equation for the Oxygen Reduction Reaction on Pt(111) in Acidic Media. Journal of Physical Chemistry A, 2007, 111, 12702-12710.	2.5	185
7	Intrinsic kinetic equation for oxygenreduction reaction in acidic media: the double Tafel slope and fuelcell applications. Faraday Discussions, 2008, 140, 347-362.	3.2	150
8	Enhancing Oxygen Reduction Reaction Activity via Pdâ^'Au Alloy Sublayer Mediation of Pt Monolayer Electrocatalysts. Journal of Physical Chemistry Letters, 2010, 1, 3238-3242.	4.6	150
9	Dual-Pathway Kinetic Equation for the Hydrogen Oxidation Reaction on Pt Electrodes. Journal of the Electrochemical Society, 2006, 153, A1732.	2.9	144
10	Direct 12-Electron Oxidation of Ethanol on a Ternary Au(core)-PtIr(Shell) Electrocatalyst. Journal of the American Chemical Society, 2019, 141, 9629-9636.	13.7	143
11	Reaction mechanism for oxygen evolution on RuO2, IrO2, and RuO2@IrO2 core-shell nanocatalysts. Journal of Electroanalytical Chemistry, 2018, 819, 296-305.	3.8	141
12	Pathways to ultra-low platinum group metal catalyst loading in proton exchange membrane electrolyzers. Catalysis Today, 2016, 262, 121-132.	4.4	129
13	High Performance Pt Monolayer Catalysts Produced via Core-Catalyzed Coating in Ethanol. ACS Catalysis, 2014, 4, 738-742.	11.2	78
14	Low-Coordination Sites in Oxygen-Reduction Electrocatalysis: Their Roles and Methods for Removal. Langmuir, 2011, 27, 8540-8547.	3.5	76
15	Hollow core supported Pt monolayer catalysts for oxygen reduction. Catalysis Today, 2013, 202, 50-54.	4.4	74
16	Favorable Core/Shell Interface within Co ₂ P/Pt Nanorods for Oxygen Reduction Electrocatalysis. Nano Letters, 2018, 18, 7870-7875.	9.1	68
17	Truncated Ditetragonal Gold Prisms as Nanofacet Activators of Catalytic Platinum. Journal of the American Chemical Society, 2011, 133, 18074-18077.	13.7	66
18	Hydrogen Oxidation Reaction on Pt in Acidic Media:  Adsorption Isotherm and Activation Free Energies. Journal of Physical Chemistry C, 2007, 111, 12425-12433.	3.1	56

JIA XU WANG

#	Article	IF	CITATIONS
19	Gram-Scale-Synthesized Pd ₂ Co-Supported Pt Monolayer Electrocatalysts for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2010, 114, 8950-8957.	3.1	54
20	X-ray Scattering Study of Tl Adlayers on the Au(111) Electrode in Alkaline Solutions: Metal Monolayer, OH- Coadsorption, and Oxide Formation. The Journal of Physical Chemistry, 1994, 98, 7182-7190.	2.9	53
21	Surface Proton Transfer Promotes Four-Electron Oxygen Reduction on Gold Nanocrystal Surfaces in Alkaline Solution. Journal of the American Chemical Society, 2017, 139, 7310-7317.	13.7	51
22	Temperature-Dependent Kinetics and Reaction Mechanism of Ammonia Oxidation on Pt, Ir, and PtIr Alloy Catalysts. Journal of the Electrochemical Society, 2018, 165, J3095-J3100.	2.9	49
23	Ultralow charge-transfer resistance with ultralow Pt loading for hydrogen evolution and oxidation using Ru@Pt core-shell nanocatalysts. Scientific Reports, 2015, 5, 12220.	3.3	44
24	Adsorption Configuration and Local Ordering of Silicotungstate Anions on Ag(100) Electrode Surfaces. Journal of the American Chemical Society, 2001, 123, 8838-8843.	13.7	42
25	NbOx nano-nail with a Pt head embedded in carbon as a highly active and durable oxygen reduction catalyst. Nano Energy, 2020, 69, 104455.	16.0	37
26	Formation of Ordered Multilayers from Polyoxometalates and Silver on Electrode Surfaces. Journal of Physical Chemistry B, 2004, 108, 7927-7933.	2.6	22
27	Pt monolayer shell on hollow Pd core electrocatalysts: Scale up synthesis, structure, and activity for the oxygen reduction reaction. Journal of the Serbian Chemical Society, 2013, 78, 1983-1992.	0.8	3
28	Hydrogen Oxidation and Evolution on Platinum in Acids. , 2014, , 1045-1049.		1
29	Iridium-Based Catalysts for Electro-Oxidation of Ammonia in Alkaline Media. ECS Meeting Abstracts, 2019, , .	0.0	1
30	Platinum-Iridium Modified Gold Nanoparticles Catalysts for Electrooxidation of Ethanol in Alkaline Media. ECS Meeting Abstracts, 2019, , .	0.0	0
31	(Invited) Challenges and Opportunities in Developing Anode Catalysts for Direct Ethanol and Ammonia Fuel Cells. ECS Meeting Abstracts, 2019, , .	0.0	0
32	Enhanced Oxygen Reduction Performance on PtNiN/C Catalysts. ECS Meeting Abstracts, 2020, MA2020-02, 2312-2312.	0.0	0