Rosa MarÃ-a HernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4285702/publications.pdf

Version: 2024-02-01

195 papers 10,864 citations

51 h-index 96 g-index

196 all docs 196
docs citations

196 times ranked 14759 citing authors

#	Article	IF	CITATIONS
1	Human Hair Follicle-Derived Mesenchymal Stromal Cells from the Lower Dermal Sheath as a Competitive Alternative for Immunomodulation. Biomedicines, 2022, 10, 253.	1.4	7
2	Bioactive and degradable hydrogel based on human platelet-rich plasma fibrin matrix combined with oxidized alginate in a diabetic mice wound healing model. Materials Science and Engineering C, 2022, 135, 112695.	3.8	15
3	Mesenchymal stromal cells encapsulated in licensing hydrogels exert delocalized systemic protection against ulcerative colitis via subcutaneous xenotransplantation. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 172, 31-40.	2.0	5
4	Dual effect of TAT functionalized DHAH lipid nanoparticles with neurotrophic factors in human BBB and microglia cultures. Fluids and Barriers of the CNS, 2022, 19, 22.	2.4	5
5	Cell-based dressings: A journey through chronic wound management. , 2022, 135, 212738.		10
6	Extracellular vesicles from hair follicle-derived mesenchymal stromal cells: isolation, characterization and therapeutic potential for chronic wound healing. Stem Cell Research and Therapy, 2022, 13, 147.	2.4	20
7	Green hemostatic sponge-like scaffold composed of soy protein and chitin for the treatment of epistaxis. Materials Today Bio, 2022, 15, 100273.	2.6	5
8	Clinical progress in MSC-based therapies for the management of severe COVID-19. Cytokine and Growth Factor Reviews, 2022, 68, 25-36.	3.2	10
9	Cell microencapsulation technologies for sustained drug delivery: Clinical trials and companies. Drug Discovery Today, 2021, 26, 852-861.	3.2	11
10	Characterization of Bio-Inspired Electro-Conductive Soy Protein Films. Polymers, 2021, 13, 416.	2.0	9
11	Latest advances to enhance the therapeutic potential of mesenchymal stromal cells for the treatment of immune-mediated diseases. Drug Delivery and Translational Research, 2021, 11, 498-514.	3.0	5
12	GSE4â€loaded nanoparticles a potential therapy for lung fibrosis that enhances pneumocyte growth, reduces apoptosis and DNA damage. FASEB Journal, 2021, 35, e21422.	0.2	9
13	3D Bioprinting of Functional Skin Substitutes: From Current Achievements to Future Goals. Pharmaceuticals, 2021, 14, 362.	1.7	32
14	Cell microencapsulation technologies for sustained drug delivery: Latest advances in efficacy and biosafety. Journal of Controlled Release, 2021, 335, 619-636.	4.8	31
15	Immunomodulatory Biomaterials for Tissue Repair. Chemical Reviews, 2021, 121, 11305-11335.	23.0	121
16	Mesenchymal Stromal Cell Secretome for the Treatment of Immune-Mediated Inflammatory Diseases: Latest Trends in Isolation, Content Optimization and Delivery Avenues. Pharmaceutics, 2021, 13, 1802.	2.0	30
17	Mesenchymal stromal cell based therapies for the treatment of immune disorders: recent milestones and future challenges. Expert Opinion on Drug Delivery, 2020, 17, 189-200.	2.4	21
18	Surface indicators are correlated with soil multifunctionality in global drylands. Journal of Applied Ecology, 2020, 57, 424-435.	1.9	35

#	Article	IF	Citations
19	Nanostructured Lipid Carriers Made of Ω-3 Polyunsaturated Fatty Acids: In Vitro Evaluation of Emerging Nanocarriers to Treat Neurodegenerative Diseases. Pharmaceutics, 2020, 12, 928.	2.0	8
20	Multifunctional biomimetic hydrogel systems to boost the immunomodulatory potential of mesenchymal stromal cells. Biomaterials, 2020, 257, 120266.	5.7	44
21	3D encapsulation and inflammatory licensing of mesenchymal stromal cells alter the expression of common reference genes used in real-time RT-qPCR. Biomaterials Science, 2020, 8, 6741-6753.	2.6	4
22	Chronic wounds: Current status, available strategies and emerging therapeutic solutions. Journal of Controlled Release, 2020, 328, 532-550.	4.8	151
23	Overcoming the Inflammatory Stage of Non-Healing Wounds: In Vitro Mechanism of Action of Negatively Charged Microspheres (NCMs). Nanomaterials, 2020, 10, 1108.	1.9	14
24	Structure-properties relationship of chitosan/collagen films with potential for biomedical applications. Carbohydrate Polymers, 2020, 237, 116159.	5.1	85
25	In vitro and in vivo antimicrobial activity of sodium colistimethate and amikacin-loaded nanostructured lipid carriers (NLC). Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102259.	1.7	12
26	Soy protein and chitin sponge-like scaffolds: from natural by-products to cell delivery systems for biomedical applications. Green Chemistry, 2020, 22, 3445-3460.	4.6	23
27	Clinical Applications of Cell Encapsulation Technology. Methods in Molecular Biology, 2020, 2100, 473-491.	0.4	9
28	Monitoring implantable immunoisolation devices with intrinsic fluorescence of genipin. Journal of Biophotonics, 2019, 12, e201800170.	1.1	4
29	Extracellular matrix protein microarray-based biosensor with single cell resolution: Integrin profiling and characterization of cell-biomaterial interactions. Sensors and Actuators B: Chemical, 2019, 299, 126954.	4.0	16
30	Development of Bioinspired Gelatin and Gelatin/Chitosan Bilayer Hydrofilms for Wound Healing. Pharmaceutics, 2019, 11, 314.	2.0	44
31	Preclinical safety of topically administered nanostructured lipid carriers (NLC) for wound healing application: biodistribution and toxicity studies. International Journal of Pharmaceutics, 2019, 569, 118484.	2.6	28
32	GSE4 peptide suppresses oxidative and telomere deficiencies in ataxia telangiectasia patient cells. Cell Death and Differentiation, 2019, 26, 1998-2014.	5.0	22
33	Safety and effectiveness of sodium colistimethate-loaded nanostructured lipid carriers (SCM-NLC) against P. aeruginosa: in vitro and in vivo studies following pulmonary and intramuscular administration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18, 101-111.	1.7	22
34	Type 1 Diabetes Mellitus reversal via implantation of magnetically purified microencapsulated pseudoislets. International Journal of Pharmaceutics, 2019, 560, 65-77.	2.6	12
35	Review of Advanced Hydrogel-Based Cell Encapsulation Systems for Insulin Delivery in Type 1 Diabetes Mellitus. Pharmaceutics, 2019, 11, 597.	2.0	56
36	Force spectroscopy-based simultaneous topographical and mechanical characterization to study polymer-to-polymer interactions in coated alginate microspheres. Scientific Reports, 2019, 9, 20112.	1.6	9

#	Article	IF	Citations
37	Composite nanofibrous membranes of PLGA/Aloe vera containing lipid nanoparticles for wound dressing applications. International Journal of Pharmaceutics, 2019, 556, 320-329.	2.6	55
38	Hyaluronic acid enhances cell survival of encapsulated insulin-producing cells in alginate-based microcapsules. International Journal of Pharmaceutics, 2019, 557, 192-198.	2.6	34
39	Hyaluronic Acid Promotes Differentiation of Mesenchymal Stem Cells from Different Sources toward Pancreatic Progenitors within Three-Dimensional Alginate Matrixes. Molecular Pharmaceutics, 2019, 16, 834-845.	2.3	15
40	3D cell-laden polymers to release bioactive products in the eye. Progress in Retinal and Eye Research, 2019, 68, 67-82.	7.3	15
41	Beneficial effects of n-3 polyunsaturated fatty acids administration in a partial lesion model of Parkinson's disease: The role of glia and NRf2 regulation. Neurobiology of Disease, 2019, 121, 252-262.	2.1	67
42	Engineering a Clinically Translatable Bioartificial Pancreas to Treat Type I Diabetes. Trends in Biotechnology, 2018, 36, 445-456.	4.9	62
43	Microencapsulated macrophages releases conditioned medium able to prevent epithelial to mesenchymal transition. Drug Delivery, 2018, 25, 91-101.	2.5	3
44	Characterization of an encapsulated insulin secreting human pancreatic beta cell line in a modular microfluidic device. Journal of Drug Targeting, 2018, 26, 36-44.	2.1	15
45	Alginate Microcapsules for Drug Delivery. Springer Series in Biomaterials Science and Engineering, 2018, , 67-100.	0.7	11
46	The Role of Lipid Nanoparticles and its Surface Modification in Reaching the Brain: An Approach for Neurodegenerative Diseases Treatment. Current Drug Delivery, 2018, 15, 1218-1220.	0.8	3
47	Graphene oxide enhances alginate encapsulated cells viability and functionality while not affecting the foreign body response. Drug Delivery, 2018, 25, 1147-1160.	2.5	25
48	Advances in the slow freezing cryopreservation of microencapsulated cells. Journal of Controlled Release, 2018, 281, 119-138.	4.8	48
49	3D Printed porous polyamide macrocapsule combined with alginate microcapsules for safer cell-based therapies. Scientific Reports, 2018, 8, 8512.	1.6	25
50	Low molecular-weight hyaluronan as a cryoprotectant for the storage of microencapsulated cells. International Journal of Pharmaceutics, 2018, 548, 206-216.	2.6	4
51	Preparation and Characterization of Resveratrol Loaded Pectin/Alginate Blend Gastro-Resistant Microparticles. Molecules, 2018, 23, 1886.	1.7	16
52	Intranasal Administration of TAT-Conjugated Lipid Nanocarriers Loading GDNF for Parkinson's Disease. Molecular Neurobiology, 2018, 55, 145-155.	1.9	95
53	Hybrid Alginate–Protein-Coated Graphene Oxide Microcapsules Enhance the Functionality of Erythropoietin Secreting C ₂ C ₁₂ Myoblasts. Molecular Pharmaceutics, 2017, 14, 885-898.	2.3	13
54	Nanotechnology-based delivery systems to release growth factors and other endogenous molecules for chronic wound healing. Journal of Drug Delivery Science and Technology, 2017, 42, 2-17.	1.4	28

#	Article	IF	Citations
55	Alginate Microcapsules Incorporating Hyaluronic Acid Recreate Closer <i>in Vivo</i> Environment for Mesenchymal Stem Cells. Molecular Pharmaceutics, 2017, 14, 2390-2399.	2.3	28
56	Cell microencapsulation technology: Current vision of its therapeutic potential through the administration routes. Journal of Drug Delivery Science and Technology, 2017, 42, 49-62.	1.4	30
57	Improved control over MSCs behavior within 3D matrices by using different cell loads in both in vitro and in vivo environments. International Journal of Pharmaceutics, 2017, 533, 62-72.	2.6	4
58	Ultra thin hydro-films based on lactose-crosslinked fish gelatin for wound healing applications. International Journal of Pharmaceutics, 2017, 530, 455-467.	2.6	36
59	The role of osmolarity adjusting agents in the regulation of encapsulated cell behavior to provide a safer and more predictable delivery of therapeutics. Drug Delivery, 2017, 24, 1654-1666.	2.5	13
60	Novel nanofibrous dressings containing rhEGF and Aloe vera for wound healing applications. International Journal of Pharmaceutics, 2017, 523, 556-566.	2.6	145
61	Use of Flow Focusing Technique for Microencapsulation of Myoblasts. Methods in Molecular Biology, 2017, 1479, 207-216.	0.4	2
62	Microencapsulated Cells for Cancer Therapy. Methods in Molecular Biology, 2017, 1479, 261-272.	0.4	2
63	Morphological Changes in a Severe Model of Parkinson's Disease and Its Suitability to Test the Therapeutic Effects of Microencapsulated Neurotrophic Factors. Molecular Neurobiology, 2017, 54, 7722-7735.	1.9	4
64	Nanotechnology Based Approaches for Neurodegenerative Disorders: Diagnosis and Treatment. , 2017, , 57-87.		3
65	Nanotherapeutic Platforms for Cancer Treatment: From Preclinical Development to Clinical Application., 2016,, 813-869.		5
66	Nanotechnology-based drug-delivery systems releasing growth factors to the CNS., 2016,, 371-402.		3
67	Intranasal Administration of Chitosan-Coated Nanostructured Lipid Carriers Loaded with GDNF Improves Behavioral and Histological Recovery in a Partial Lesion Model of Parkinson's Disease. Journal of Biomedical Nanotechnology, 2016, 12, 2220-2280.	0.5	65
68	Advances in nanomedicine for the treatment of Alzheimer's and Parkinson's diseases. Nanomedicine, 2016, 11, 1267-1285.	1.7	35
69	LL37 loaded nanostructured lipid carriers (NLC): A new strategy for the topical treatment of chronic wounds. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 108, 310-316.	2.0	76
70	Nanotechnology approaches for skin wound regeneration using drug-delivery systems., 2016,, 31-55.		10
71	Nanoparticle transport across in vitro olfactory cell monolayers. International Journal of Pharmaceutics, 2016, 499, 81-89.	2.6	81
72	Optoacoustic imaging enabled biodistribution study of cationic polymeric biodegradable nanoparticles. Contrast Media and Molecular Imaging, 2015, 10, 421-427.	0.4	8

#	Article	lF	Citations
73	Specific requirements regarding module 5. Pharmaceuticals Policy and Law, 2015, 17, 279-281.	0.1	O
74	Development and in vitro evaluation of lipid nanoparticle-based dressings for topical treatment of chronic wounds. International Journal of Pharmaceutics, 2015, 490, 404-411.	2.6	29
75	Development and validation of a bioanalytical method for the simultaneous determination of heroin, its main metabolites, naloxone and naltrexone by LC–MS/MS in human plasma samples: Application to a clinical trial of oral administration of a heroin/naloxone formulation. Journal of Pharmaceutical and Biomedical Analysis, 2015, 114, 105-112.	1.4	15
76	Assessment of the Behavior of Mesenchymal Stem Cells Immobilized in Biomimetic Alginate Microcapsules. Molecular Pharmaceutics, 2015, 12, 3953-3962.	2.3	22
77	Advances in cell encapsulation technology and its application in drug delivery. Expert Opinion on Drug Delivery, 2015, 12, 1251-1267.	2.4	31
78	Cryopreservation of microencapsulated murine mesenchymal stem cells genetically engineered to secrete erythropoietin. International Journal of Pharmaceutics, 2015, 485, 15-24.	2.6	32
79	Development of surface modified biodegradable polymeric nanoparticles to deliver GSE24.2 peptide to cells: A promising approach for the treatment of defective telomerase disorders. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 91, 91-102.	2.0	25
80	Graphene oxide increases the viability of C2C12 myoblasts microencapsulated in alginate. International Journal of Pharmaceutics, 2015, 493, 260-270.	2.6	34
81	Chitosan coated nanostructured lipid carriers for brain delivery of proteins by intranasal administration. Colloids and Surfaces B: Biointerfaces, 2015, 134, 304-313.	2.5	135
82	Specific requirements for somatic cell therapy medicinal products and tissue engineered products. Pharmaceuticals Policy and Law, 2015, 17, 271-277.	0.1	0
83	Cell encapsulation: technical and clinical advances. Trends in Pharmacological Sciences, 2015, 36, 537-546.	4.0	151
84	Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1551-1573.	1.7	211
85	Evaluation of different RGD ligand densities in the development of cell-based drug delivery systems. Journal of Drug Targeting, 2015, 23, 806-812.	2.1	14
86	Design and evaluation of surface and adjuvant modified PLGA microspheres for uptake by dendritic cells to improve vaccine responses. International Journal of Pharmaceutics, 2015, 496, 371-381.	2.6	30
87	Topographical Distribution of Morphological Changes in a Partial Model of Parkinson's Disease—Effects of Nanoencapsulated Neurotrophic Factors Administration. Molecular Neurobiology, 2015, 52, 846-858.	1.9	18
88	Microencapsulation of therapeutic bispecific antibodies producing cells: immunotherapeutic organoids for cancer management. Journal of Drug Targeting, 2015, 23, 170-179.	2.1	24
89	The topical administration of rhEGF-loaded nanostructured lipid carriers (rhEGF-NLC) improves healing in a porcine full-thickness excisional wound model. Journal of Controlled Release, 2015, 197, 41-47.	4.8	100
90	Emerging Therapeutic Approaches Based on Nanotechnology for the Treatment of Diseases Associated with Telomere Dysfunction. Mini-Reviews in Medicinal Chemistry, 2015, 15, 490-502.	1.1	2

#	Article	IF	Citations
91	Increased antiparkinson efficacy of the combined administration of VEGF- and GDNF-loaded nanospheres in a partial lesion model of Parkinson's disease. International Journal of Nanomedicine, 2014, 9, 2677.	3.3	42
92	The synergistic effects of the RGD density and the microenvironment on the behavior of encapsulated cells:In vitroandin vivodirect comparative study. Journal of Biomedical Materials Research - Part A, 2014, 102, 3965-3972.	2.1	16
93	Behaviour and ultrastructure of human bone marrow-derived mesenchymal stem cells immobilised in alginate-poly- <scp>I</scp> -lysine-alginate microcapsules. Journal of Microencapsulation, 2014, 31, 579-589.	1.2	17
94	Application of cell encapsulation for controlled delivery of biological therapeutics. Advanced Drug Delivery Reviews, 2014, 67-68, 3-14.	6.6	100
95	Nanotherapeutic approaches for brain cancer management. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, e905-e919.	1.7	87
96	Development and validation of a rapid HPLC method for the quantification of GSE4 peptide in biodegradable PEI–PLGA nanoparticles. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 972, 95-101.	1.2	4
97	A novel strategy for the treatment of chronic wounds based on the topical administration of rhEGF-loaded lipid nanoparticles: In vitro bioactivity and in vivo effectiveness in healing-impaired db/db mice. Journal of Controlled Release, 2014, 185, 51-61.	4.8	143
98	Multifunctional hydrogel-based scaffold for improving the functionality of encapsulated therapeutic cells and reducing inflammatory response. Acta Biomaterialia, 2014, 10, 4206-4216.	4.1	29
99	Designing improved poly lactic-co-glycolic acid microspheres for a malarial vaccine: incorporation of alginate and polyinosinic–polycytidilic acid. Journal of Microencapsulation, 2014, 31, 560-566.	1.2	6
100	Encapsulation of Cells in Alginate Gels. Methods in Molecular Biology, 2013, 1051, 313-325.	0.4	11
101	VEGF-releasing biodegradable nanospheres administered by craniotomy: A novel therapeutic approach in the APP/Ps1 mouse model of Alzheimer's disease. Journal of Controlled Release, 2013, 170, 111-119.	4.8	56
102	Therapeutic Applications of Encapsulated Cells. Methods in Molecular Biology, 2013, 1051, 349-364.	0.4	13
103	Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature, 2013, 502, 672-676.	13.7	733
104	Hydrogel-Based Scaffolds for Enclosing Encapsulated Therapeutic Cells. Biomacromolecules, 2013, 14, 322-330.	2.6	18
105	rhEGF-loaded PLGA-Alginate microspheres enhance the healing of full-thickness excisional wounds in diabetised Wistar rats. European Journal of Pharmaceutical Sciences, 2013, 50, 243-252.	1.9	61
106	In vivo administration of VEGF- and GDNF-releasing biodegradable polymeric microspheres in a severe lesion model of Parkinson's disease. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 1183-1190.	2.0	58
107	A preliminary approach to the repair of myocardial infarction using adipose tissue-derived stem cells encapsulated in magnetic resonance-labelled alginate microspheres in a porcine model. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 29-39.	2.0	38
108	Therapeutic cell encapsulation: Ten steps towards clinical translation. Journal of Controlled Release, 2013, 170, 1-14.	4.8	75

#	Article	IF	Citations
109	Inactivation of encapsulated cells and their therapeutic effects by means of TGL triple-fusion reporter/biosafety gene. Biomaterials, 2013, 34, 1442-1451.	5.7	16
110	Malaria Vaccine Adjuvants: Latest Update and Challenges in Preclinical and Clinical Research. BioMed Research International, 2013, 2013, 1-19.	0.9	35
111	Plant Species Richness and Ecosystem Multifunctionality in Global Drylands. Science, 2012, 335, 214-218.	6.0	1,043
112	Plasmodium falciparummalaria vaccines: current status, pitfalls and future directions. Expert Review of Vaccines, 2012, 11, 1071-1086.	2.0	11
113	Encapsulated VEGF-Secreting Cells Enhance Proliferation of Neuronal Progenitors in the Hippocampus of AÎ ² PP/Ps1 Mice. Journal of Alzheimer's Disease, 2012, 29, 187-200.	1.2	30
114	Combination of immune stimulating adjuvants with poly(lactide-co-glycolide) microspheres enhances the immune response of vaccines. Vaccine, 2012, 30, 589-596.	1.7	37
115	Stem cells in alginate bioscaffolds. Therapeutic Delivery, 2012, 3, 761-774.	1.2	18
116	A Perspective on Bioactive Cell Microencapsulation. BioDrugs, 2012, 26, 283-301.	2.2	31
117	Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clinical and Translational Oncology, 2012, 14, 83-93.	1.2	239
118	Novel advances in the design of three-dimensional bio-scaffolds to control cell fate: translation from 2D to 3D. Trends in Biotechnology, 2012, 30, 331-341.	4.9	121
119	Optimization of 100νm alginate-poly-l-lysine-alginate capsules for intravitreous administration. Journal of Controlled Release, 2012, 158, 443-450.	4.8	36
120	A Perspective on Bioactive Cell Microencapsulation. BioDrugs, 2012, 26, 283-301.	2.2	2
121	Novel extended-release formulation of lovastatin by one-step melt granulation: In vitro and in vivo evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77, 306-312.	2.0	24
122	Enhancing immunogenicity to PLGA microparticulate systems by incorporation of alginate and RGD-modified alginate. European Journal of Pharmaceutical Sciences, 2011, 44, 32-40.	1.9	48
123	Encapsulation of AÎ 2 1â \in "15 in PLGA microparticles enhances serum antibody response in mice immunized by subcutaneous and intranasal routes. European Journal of Pharmaceutical Sciences, 2011, 44, 200-206.	1.9	16
124	Emerging technologies in the delivery of erythropoietin for therapeutics. Medicinal Research Reviews, 2011, 31, 284-309.	5.0	20
125	Design of a composite drug delivery system to prolong functionality of cell-based scaffolds. International Journal of Pharmaceutics, 2011, 407, 142-150.	2.6	32
126	An Overview on the Field of Micro- and Nanotechnologies for Synthetic Peptide-Based Vaccines. Journal of Drug Delivery, 2011, 2011, 1-18.	2.5	54

#	Article	IF	CITATIONS
127	Microcapsules and microcarriers for in situ cell deliverya~†. Advanced Drug Delivery Reviews, 2010, 62, 711-730.	6.6	323
128	Delivery of immunostimulatory monoclonal antibodies by encapsulated hybridoma cells. Cancer Immunology, Immunotherapy, 2010, 59, 1621-1631.	2.0	38
129	Improvement of the monitoring and biosafety of encapsulated cells using the SFGNESTGL triple reporter system. Journal of Controlled Release, 2010, 146, 93-98.	4.8	29
130	The effect of encapsulated VEGF-secreting cells on brain amyloid load and behavioral impairment in a mouse model of Alzheimer's disease. Biomaterials, 2010, 31, 5608-5618.	5.7	114
131	Biomaterials in Cell Microencapsulation. Advances in Experimental Medicine and Biology, 2010, 670, 5-21.	0.8	73
132	Recent advances in the use of encapsulated cells for effective delivery of therapeutics. Therapeutic Delivery, 2010, 1, 387-396.	1.2	7
133	Comparison of the adjuvanticity of two different delivery systems on the induction of humoral and cellular responses to synthetic peptides. Drug Delivery, 2010, 17, 490-499.	2.5	16
134	In vivo evaluation of two new sustained release formulations elaborated by one-step melt granulation: Level A in vitro–in vivo correlation. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 75, 232-237.	2.0	17
135	Epo Delivery by Genetically Engineered C2C12 Myoblasts Immobilized in Microcapsules. Advances in Experimental Medicine and Biology, 2010, 670, 54-67.	0.8	3
136	Bioactive cell-hydrogel microcapsules for cell-based drug delivery. Journal of Controlled Release, 2009, 135, 203-210.	4.8	94
137	Xenogeneic transplantation of erythropoietin-secreting cells immobilized in microcapsules using transient immunosuppression. Journal of Controlled Release, 2009, 137, 174-178.	4.8	49
138	Biocompatibility and <i>in vivo</i> evaluation of oligochitosans as cationic modifiers of alginate/Ca microcapsules. Journal of Biomedical Materials Research - Part A, 2009, 91A, 1119-1130.	2.1	18
139	Cryopreservation based on freezing protocols for the long-term storage of microencapsulated myoblasts. Biomaterials, 2009, 30, 3495-3501.	5.7	46
140	Polymeric Materials and Formulation Technologies for Modified-Release Tablet Development. Mini-Reviews in Medicinal Chemistry, 2009, 9, 1504-1517.	1.1	3
141	Cell microencapsulation technology: Towards clinical application. Journal of Controlled Release, 2008, 132, 76-83.	4.8	314
142	Î ³ -Irradiation effects on biopharmaceutical properties of PLGA microspheres loaded with SPf66 synthetic vaccine. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 519-526.	2.0	41
143	Adjuvant activity of polymer microparticles and Montanide ISA 720 on immune responses to Plasmodium falciparum MSP2 long synthetic peptides in mice. Vaccine, 2007, 25, 877-885.	1.7	36
144	In Vitro Characterization and In Vivo Functionality of Erythropoietin-Secreting Cells Immobilized in Alginatea "Poly- <scp>I</scp> -Lysinea Alginate Microcapsules. Biomacromolecules, 2007, 8, 3302-3307.	2.6	59

#	Article	IF	Citations
145	Long-term survival of encapsulated GDNF secreting cells implanted within the striatum of parkinsonized rats. International Journal of Pharmaceutics, 2007, 343, 69-78.	2.6	64
146	Encapsulation of Cells in Alginate Gels. Methods in Biotechnology, 2006, , 345-355.	0.2	22
147	Chemistry and the biological response against immunoisolating alginate–polycation capsules of different composition. Biomaterials, 2006, 27, 4831-4839.	5.7	99
148	Evaluation of human serum albumin as a substitute of foetal bovine serum for cell culture. International Journal of Pharmaceutics, 2006, 310, 8-14.	2.6	16
149	In vivo evaluation of EPO-secreting cells immobilized in different alginate-PLL microcapsules. Journal of Controlled Release, 2006, 116, 28-34.	4.8	47
150	Biomedical Applications of Immobilized Cells. Methods in Biotechnology, 2006, , 427-437.	0.2	3
151	Microcapsules prepared with different biomaterials to immobilize GDNF secreting 3T3 fibroblasts. International Journal of Pharmaceutics, 2005, 293, 1-10.	2.6	20
152	Biocompatible oligochitosans as cationic modifiers of alginate/Ca microcapsules. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 74B, 429-439.	1.6	23
153	Long-Term Expression of Erythropoietin from Myoblasts Immobilized in Biocompatible and Neovascularized Microcapsules. Molecular Therapy, 2005, 12, 283-289.	3.7	70
154	The influence of cellular seeding density in the microencapsulation of hybridoma cells. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 521-529.	1.9	5
155	Biocompatibility Evaluation of Different Alginates and Alginate-Based Microcapsules. Biomacromolecules, 2005, 6, 927-931.	2.6	109
156	Comparative study of microcapsules elaborated with three polycations (PLL, PDL, PLO) for cell immobilization. Journal of Microencapsulation, 2005, 22, 303-315.	1.2	56
157	Preparation of sustained release hydrophilic matrices by melt granulation in a high-shear mixer. Journal of Pharmacy and Pharmaceutical Sciences, 2005, 8, 132-40.	0.9	18
158	History, challenges and perspectives of cell microencapsulation. Trends in Biotechnology, 2004, 22, 87-92.	4.9	333
159	The search for new \hat{I}^2 -cell sources. Trends in Biotechnology, 2004, 22, 612-613.	4.9	2
160	Enhancing Immunogenicity and Reducing Dose of Microparticulated Synthetic Vaccines: Single Intradermal Administration. Pharmaceutical Research, 2004, 21, 121-126.	1.7	28
161	Techniques: New approaches to the delivery of biopharmaceuticals. Trends in Pharmacological Sciences, 2004, 25, 382-387.	4.0	87
162	Potent, long lasting systemic antibody levels and mixed Th1/Th2 immune response after nasal immunization with malaria antigen loaded PLGA microparticles. Vaccine, 2004, 22, 1423-1432.	1.7	83

#	Article	IF	Citations
163	Survival of different cell lines in alginate-agarose microcapsules. European Journal of Pharmaceutical Sciences, 2003, 18, 23-30.	1.9	95
164	Controversies over stem cell research. Trends in Biotechnology, 2003, 21, 109-112.	4.9	15
165	Drug delivery in biotechnology: present and future. Current Opinion in Biotechnology, 2003, 14, 659-664.	3.3	198
166	Development and optimisation of alginate-PMCG-alginate microcapsules for cell immobilisation. International Journal of Pharmaceutics, 2003, 259, 57-68.	2.6	67
167	Immune response after oral administration of the encapsulated malaria synthetic peptide SPf66. International Journal of Pharmaceutics, 2003, 260, 273-282.	2.6	43
168	Cell encapsulation: Promise and progress. Nature Medicine, 2003, 9, 104-107.	15.2	546
169	Cell microencapsulation technology for biomedical purposes: novel insights and challenges. Trends in Pharmacological Sciences, 2003, 24, 207-210.	4.0	127
170	Immune responses to orally administered PLGA microparticles: influence of oil vehicles and surfactive agents. Journal of Microencapsulation, 2003, 20, 525-536.	1.2	3
171	Preparation and stability of agarose microcapsules containing BCG. Journal of Microencapsulation, 2002, 19, 237-244.	1.2	14
172	Remarkably high antibody levels and protection against P. falciparum malaria in Aotus monkeys after a single immunisation of SPf66 encapsulated in PLGA microspheres. Vaccine, 2002, 20, 1707-1710.	1.7	50
173	Influence of dose and immunization route on the serum Ig G antibody response to BSA loaded PLGA microspheres. Vaccine, 2002, 20, 2181-2190.	1.7	41
174	Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine, 2002, 21, 67-77.	1.7	255
175	Encapsulated cell technology: from research to market. Trends in Biotechnology, 2002, 20, 382-387.	4.9	59
176	Release of salbutamol sulphate and ketoprofen enantiomers from matrices containing HPMC and cellulose derivatives. Chirality, 2002, 14, 806-813.	1.3	13
177	Pharmacokinetics and tissue distribution of intravenous pefloxacin for antibiotic prophylaxis in biliary surgery. Biopharmaceutics and Drug Disposition, 2002, 23, 293-300.	1.1	1
178	Release of ketoprofen enantiomers from HPMC K100M matricesâ€"diffusion studies. International Journal of Pharmaceutics, 2002, 239, 61-68.	2.6	24
179	Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates. Biomaterials, 2002, 23, 3825-3831.	5.7	256
180	Biodegradable PLGA microspheres as a delivery system for malaria synthetic peptide SPf66. Vaccine, 2001, 19, 4445-4451.	1.7	55

#	Article	IF	CITATIONS
181	Preliminary Assessment of the Immune Response toOlea europaeaPollen Extracts Encapsulated into PLGA Microspheres. Pharmaceutical Development and Technology, 2001, 6, 621-627.	1.1	13
182	Microencapsulation of an antiâ€VE–cadherin antibody secreting 1B5 hybridoma cells. Biotechnology and Bioengineering, 2001, 76, 285-294.	1.7	38
183	Effect of aging on the release of salbutamol sulfate from lipid matrices. International Journal of Pharmaceutics, 2000, 208, 13-21.	2.6	23
184	Enhanced immune response after subcutaneous and oral immunization with biodegradable PLGA microspheres. Journal of Controlled Release, 1998, 56, 63-73.	4.8	93
185	Release of salbutamol sulfate enantiomers from hydroxypropylmethylcellulose matrices. International Journal of Pharmaceutics, 1998, 161, 37-43.	2.6	20
186	Stability of BSA encapsulated into PLGA microspheres using PAGE and capillary electrophoresis. International Journal of Pharmaceutics, 1998, 169, 45-54.	2.6	54
187	Pharmacokinetics and Tissue Distribution of Intravenous Ofloxacin for Antibiotic Prophylaxis in Biliary Surgery. Clinical Drug Investigation, 1998, 15, 491-496.	1.1	6
188	Determination of salbutamol enantiomers by high-performance capillary electrophoresis and its application to dissolution assays. Journal of Pharmaceutical and Biomedical Analysis, 1997, 16, 357-366.	1.4	27
189	Correlation of â€in vitro' release and â€in vivo' absorption characteristics of four salbutamol sulphate formulations. International Journal of Pharmaceutics, 1996, 139, 45-52.	2.6	8
190	Influence of Partial Hepatectomy on Theophylline Pharmacokinetics in Rats. Journal of Pharmaceutical Sciences, 1996, 85, 1133-1135.	1.6	5
191	The Influence of Adrenalin on the Pharmacokinetics of Interpleurally Administered Lidocaine in Patients With Pancreatic Neoplasia. Journal of Clinical Pharmacology, 1995, 35, 426-431.	1.0	5
192	Interspecies scaling of cimetidine-theophylline pharmacokinetic interaction: interspecies scaling in pharmacokinetic interactions. Pharmaceutical Research, 1994, 11, 945-950.	1.7	27
193	Platelet Adhesivity to Subendothelium Is Influenced by Polymorphonuclear Leukocytes: Studies with Aspirin and Salicylate. Pathophysiology of Haemostasis and Thrombosis: International Journal on Haemostasis and Thrombosis Research, 1993, 23, 1-7.	0.5	3
194	Rheological beheviour of hydrophilic polymers and drug release from erodible matrices. Journal of Controlled Release, 1992, 18, 205-212.	4.8	47
195	PHARMACOKINETICS AND DISTRIBUTION OF KETAMINE AFTER EXTRADURAL ADMINISTRATION TO DOGS. British Journal of Anaesthesia, 1991, 67, 310-316.	1.5	46