List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/428560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Divergence of character and premature convergence: A survey of methodologies for promoting diversity in evolutionary optimization. Information Sciences, 2016, 329, 782-799.	6.9	86
2	Classification and specific primer design for accurate detection of SARS-CoV-2 using deep learning. Scientific Reports, 2021, 11, 947.	3.3	66
3	Data driven modeling of plastic deformation. Computer Methods in Applied Mechanics and Engineering, 2017, 318, 981-1004.	6.6	65
4	Review on environmental models in the food chain - Current status and future perspectives. Journal of Cleaner Production, 2018, 176, 1012-1025.	9.3	65
5	Automatic discovery of 100-miRNA signature for cancer classification using ensemble feature selection. BMC Bioinformatics, 2019, 20, 480.	2.6	54
6	Increasing pattern recognition accuracy for chemical sensing by evolutionary based drift compensation. Pattern Recognition Letters, 2011, 32, 1594-1603.	4.2	50
7	Evolutionary optimization of convolutional neural networks for cancer miRNA biomarkers classification. Applied Soft Computing Journal, 2018, 65, 91-100.	7.2	44
8	Machine Learning-Based Ensemble Recursive Feature Selection of Circulating miRNAs for Cancer Tumor Classification. Cancers, 2020, 12, 1785.	3.7	38
9	Trade-offs and synergies between livestock production and other ecosystem services. Agricultural Systems, 2019, 168, 58-72.	6.1	37
10	Some remarks on computational approaches towards sustainable complex agri-food systems. Trends in Food Science and Technology, 2016, 48, 88-101.	15.1	28
11	Automated playtesting in collectible card games using evolutionary algorithms: A case study in hearthstone. Knowledge-Based Systems, 2018, 153, 133-146.	7.1	27
12	Scientific Challenges in Performing Life-Cycle Assessment in the Food Supply Chain. Foods, 2019, 8, 301.	4.3	24
13	Towards automated malware creation. , 2014, , .		23
14	Cross-European initial survey on the use of mathematical models in food industry. Journal of Food Engineering, 2019, 261, 109-116.	5.2	23
15	Countering Android Malware: A Scalable Semi-Supervised Approach for Family-Signature Generation. IEEE Access, 2018, 6, 59540-59556.	4.2	20
16	Optimizing Hearthstone agents using an evolutionary algorithm. Knowledge-Based Systems, 2020, 188, 105032.	7.1	18
17	Inspyred: Bio-inspired algorithms in Python. Genetic Programming and Evolvable Machines, 2020, 21, 269-272.	2.2	18
18	Optimizing groups of colluding strong attackers in mobile urban communication networks with evolutionary algorithms. Applied Soft Computing Journal, 2016, 40, 416-426.	7.2	17

#	Article	IF	CITATIONS
19	Multi-Criteria Reverse Engineering for Food: Genesis and Ongoing Advances. Food Engineering Reviews, 2019, 11, 44-60.	5.9	17
20	The impact of topology on energy consumption for collection tree protocols: An experimental assessment through evolutionary computation. Applied Soft Computing Journal, 2014, 16, 210-222.	7.2	14
21	Evolutionary deckbuilding in hearthstone. , 2016, , .		14
22	A mathematical model for the prediction of the whey protein fouling mass in a pilot scale plate heat exchanger. Food Control, 2019, 106, 106729.	5.5	14
23	A benchmark for cooperative coevolution. Memetic Computing, 2012, 4, 263-277.	4.0	12
24	Multi-objective Evolutionary Algorithms for Influence Maximization in Social Networks. Lecture Notes in Computer Science, 2017, , 221-233.	1.3	12
25	Operator Selection using Improved Dynamic Multi-Armed Bandit. , 2015, , .		11
26	Bayesian Network Structure Learning from Limited Datasets through Graph Evolution. Lecture Notes in Computer Science, 2012, , 254-265.	1.3	10
27	Industrial Applications of Evolutionary Algorithms. Intelligent Systems Reference Library, 2012, , .	1.2	9
28	In silico modeling of protein hydrolysis by endoproteases: a case study on pepsin digestion of bovine lactoferrin. Food and Function, 2017, 8, 4404-4413.	4.6	9
29	Improving Multi-objective Evolutionary Influence Maximization in Social Networks. Lecture Notes in Computer Science, 2018, , 117-124.	1.3	9
30	A Framework for Automated Detection of Power-related Software Errors in Industrial Verification Processes. Journal of Electronic Testing: Theory and Applications (JETTA), 2010, 26, 689-697.	1.2	8
31	On the functional test of Branch Prediction Units based on Branch History Table. , 2011, , .		8
32	A novel methodology for diversity preservation in evolutionary algorithms. , 2008, , .		7
33	The tradeoffs between data delivery ratio and energy costs in wireless sensor networks. , 2014, , .		7
34	Two complementary methods for the computational modeling of cleaning processes in food industry. Computers and Chemical Engineering, 2020, 135, 106733.	3.8	7
35	A Memetic Approach to Bayesian Network Structure Learning. Lecture Notes in Computer Science, 2013, , 102-111.	1.3	7
36	Malware Obfuscation through Evolutionary Packers. , 2015, , .		6

Malware Obfuscation through Evolutionary Packers. , 2015, , . 36

#	Article	IF	CITATIONS
37	Automatic Generation of Software-based Functional Failing Test for Speed Debug and On-silicon Timing Verification. , 2011, , .		5
38	Software-Based Testing for System Peripherals. Journal of Electronic Testing: Theory and Applications (JETTA), 2012, 28, 189-200.	1.2	5
39	An efficient distance metric for linear genetic programming. , 2013, , .		5
40	Food model exploration through evolutionary optimisation coupled with visualisation: Application to the prediction of a milk gel structure. Innovative Food Science and Emerging Technologies, 2014, 25, 67-77.	5.6	5
41	Anatomy of a portfolio optimizer under a limited budget constraint. Evolutionary Intelligence, 2016, 9, 125-136.	3.6	5
42	Exploiting Evolutionary Modeling to Prevail in Iterated Prisoner's Dilemma Tournaments. IEEE Transactions on Games, 2016, 8, 288-300.	1.4	5
43	Multiscale modeling for bioresources and bioproducts. Innovative Food Science and Emerging Technologies, 2018, 46, 41-53.	5.6	5
44	VALIS: an evolutionary classification algorithm. Genetic Programming and Evolvable Machines, 2018, 19, 453-471.	2.2	5
45	An evolutionary framework for maximizing influence propagation in social networks. Software Impacts, 2021, 9, 100107.	1.4	5
46	Lamps: A Test Problem for Cooperative Coevolution. Studies in Computational Intelligence, 2011, , 101-120.	0.9	5
47	TURAN: Evolving non-deterministic players for the iterated prisoner's dilemma. , 2014, , .		4
48	(Over-)Realism in evolutionary computation: Commentary on "On the Mapping of Genotype to Phenotype in Evolutionary Algorithms―by Peter A. Whigham, Grant Dick, and James Maclaurin. Genetic Programming and Evolvable Machines, 2017, 18, 391-393.	2.2	4
49	Modelling Processes and Products in the Cereal Chain. Foods, 2021, 10, 82.	4.3	4
50	Exploiting Evolution for an Adaptive Drift-Robust Classifier in Chemical Sensing. Lecture Notes in Computer Science, 2010, , 412-421.	1.3	4
51	LIDeOGraM: An Interactive Evolutionary Modelling Tool. Lecture Notes in Computer Science, 2018, , 189-201.	1.3	4
52	Post-silicon failing-test generation through evolutionary computation. , 2011, , .		3
53	Group evolution: Emerging synergy through a coordinated effort. , 2011, , .		3
54	Design of specific primer sets for SARS-CoV-2 variants using evolutionary algorithms. , 2021, , .		3

#	Article	IF	CITATIONS
55	On the Functional Test of Branch Prediction Units Based on the Branch History Table Architecture. International Federation for Information Processing, 2012, , 110-123.	0.4	3
56	An Evolutionary Framework for Routing Protocol Analysis in Wireless Sensor Networks. Lecture Notes in Computer Science, 2013, , 1-11.	1.3	3
57	A Novel Outlook on Feature Selection as a Multi-objective Problem. Lecture Notes in Computer Science, 2020, , 68-81.	1.3	3
58	On the Generation of Functional Test Programs for the Cache Replacement Logic. , 2009, , .		2
59	Functional Verification of DMA Controllers. Journal of Electronic Testing: Theory and Applications (JETTA), 2011, 27, 505-516.	1.2	2
60	Promoting Diversity in Evolutionary Algorithms. , 2016, , .		2
61	Annotation data about multi criteria assessment methods used in the agri-food research: The french national institute for agricultural research (INRA) experience. Data in Brief, 2019, 25, 104204.	1.0	2
62	Balancing User Interaction and Control in BNSL. Lecture Notes in Computer Science, 2014, , 211-223.	1.3	2
63	Black Holes and Revelations: Using Evolutionary Algorithms to Uncover Vulnerabilities in Disruption-Tolerant Networks. Lecture Notes in Computer Science, 2015, , 29-41.	1.3	2
64	Evolving Individual Behavior in a Multi-agent Traffic Simulator. Lecture Notes in Computer Science, 2010, , 11-20.	1.3	2
65	Discovering Hierarchical Neural Archetype Sets. Smart Innovation, Systems and Technologies, 2021, , 255-267.	0.6	2
66	Automatic detection of software defects. , 2009, , .		1
67	Functional test generation for the pLRU replacement mechanism of embedded cache memories. , 2011, , .		1
68	Evolutionary failing-test generation for modern microprocessors. , 2011, , .		1
69	Evolutionary optimization of wetlands design. , 2013, , .		1
70	Universal information distance for genetic programming. , 2014, , .		1
71	Portfolio Optimization, a Decision-Support Methodology for Small Budgets. Lecture Notes in Computer Science, 2016, , 58-72.	1.3	1
72	The Uncertainty Quandary: A Study in the Context of the Evolutionary Optimization in Games and Other Uncertain Environments. Lecture Notes in Computer Science, 2016, , 40-60.	1.3	1

#	Article	IF	CITATIONS
73	Modelling Asthma Patients' Responsiveness to Treatment Using Feature Selection and Evolutionary Computation. Lecture Notes in Computer Science, 2021, , 359-372.	1.3	1
74	Exploiting Artificial Swarms for the Virtual Measurement of Backlash in Industrial Robots. , 2021, , .		1
75	A General-Purpose Framework for Genetic Improvement. Lecture Notes in Computer Science, 2016, , 345-352.	1.3	1
76	Fundamental Flowers: Evolutionary Discovery of Coresets for Classification. Lecture Notes in Computer Science, 2019, , 550-564.	1.3	1
77	Virtual Measurement of the Backlash Gap in Industrial Manipulators. Communications in Computer and Information Science, 2020, , 189-200.	0.5	1
78	Predictable Features Elimination: An Unsupervised Approach toÂFeature Selection. Lecture Notes in Computer Science, 2022, , 399-412.	1.3	1
79	A virtual sensor for backlash in robotic manipulators. Journal of Intelligent Manufacturing, 2022, 33, 1921-1937.	7.3	1
80	Towards drift correction in chemical sensors using an evolutionary strategy. , 2010, , .		0
81	Covariance Matrix Adaptation Evolutionary Strategy for Drift Correction of Electronic Nose Data. , 2011, , .		Ο
82	Automatic Generation of On-Line Test Programs through a Cooperation Scheme. , 2012, , .		0
83	MPDEA 2016 Chairs' Welcome & Organization. , 2016, , .		Ο
84	Tutorials at PPSN 2016. Lecture Notes in Computer Science, 2016, , 1012-1022.	1.3	0
85	Evolution of Test Programs Exploiting a FSM Processor Model. Lecture Notes in Computer Science, 2011, , 162-171.	1.3	Ο
86	Making Sense of Economics Datasets with Evolutionary Coresets. Advances in Intelligent Systems and Computing, 2020, , 162-170.	0.6	0
87	Looking for archetypes: Applying game data mining to hearthstone decks. Entertainment Computing,	2.9	0