Jong Kook Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4285267/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oncogenic Role of Exosomal Circular and Long Noncoding RNAs in Gastrointestinal Cancers. International Journal of Molecular Sciences, 2022, 23, 930.	4.1	8
2	Metformin ameliorates olanzapine-induced disturbances in POMC neuron number, axonal projection, and hypothalamic leptin resistance. BMB Reports, 2022, 55, 293-298.	2.4	5
3	The Role of Noncoding RNAs in the Regulation of Anoikis and Anchorage-Independent Growth in Cancer. International Journal of Molecular Sciences, 2021, 22, 627.	4.1	22
4	Noncoding RNAs Associated with Therapeutic Resistance in Pancreatic Cancer. Biomedicines, 2021, 9, 263.	3.2	6
5	Protective Role of Transduced Tat-Thioredoxin1 (Trx1) against Oxidative Stress-Induced Neuronal Cell Death via ASK1-MAPK Signal Pathway. Biomolecules and Therapeutics, 2021, 29, 321-330.	2.4	8
6	PEP-1-GLRX1 Reduces Dopaminergic Neuronal Cell Loss by Modulating MAPK and Apoptosis Signaling in Parkinson's Disease. Molecules, 2021, 26, 3329.	3.8	5
7	Tumor spheroid-based microtumor models for preclinical evaluation of anticancer nanomedicines. Journal of Pharmaceutical Investigation, 2021, 51, 541-553.	5.3	13
8	Competing Endogenous RNAs in Cervical Carcinogenesis: A New Layer of Complexity. Processes, 2021, 9, 991.	2.8	1
9	The Hypoxia–Long Noncoding RNA Interaction in Solid Cancers. International Journal of Molecular Sciences, 2021, 22, 7261.	4.1	9
10	Anti-Cancer Activity of Phytochemicals Targeting Hypoxia-Inducible Factor-1 Alpha. International Journal of Molecular Sciences, 2021, 22, 9819.	4.1	14
11	Anti-Cancer Activity Profiling of Chemotherapeutic Agents in 3D Co-Cultures of Pancreatic Tumor Spheroids with Cancer-Associated Fibroblasts and Macrophages. Cancers, 2021, 13, 5955.	3.7	12
12	FIHâ€1 engages novel binding partners to positively influence epithelial proliferation via p63. FASEB Journal, 2020, 34, 525-539.	0.5	10
13	MicroRNA-Based Combinatorial Cancer Therapy: Effects of MicroRNAs on the Efficacy of Anti-Cancer Therapies. Cells, 2020, 9, 29.	4.1	44
14	Participation of MicroRNAs in the Treatment of Cancer with Phytochemicals. Molecules, 2020, 25, 4701.	3.8	10
15	Extracellular Vesicles (EVs) and Pancreatic Cancer: From the Role of EVs to the Interference with EV-Mediated Reciprocal Communication. Biomedicines, 2020, 8, 267.	3.2	20
16	Three-Dimensional Imaging for Multiplex Phenotypic Analysis of Pancreatic Microtumors Grown on a Minipillar Array Chip. Cancers, 2020, 12, 3662.	3.7	7
17	Phenotypic Heterogeneity and Plasticity of Cancer Cell Migration in a Pancreatic Tumor Three-Dimensional Culture Model. Cancers, 2020, 12, 1305.	3.7	21
18	Luteolin-regulated MicroRNA-301-3p Targets Caspase-8 and Modulates TRAIL Sensitivity in PANC-1 Cells. Anticancer Research, 2020, 40, 723-731.	1.1	18

Jong Kook Park

#	Article	IF	CITATIONS
19	Tat-Biliverdin Reductase A Exerts a Protective Role in Oxidative Stress-Induced Hippocampal Neuronal Cell Damage by Regulating the Apoptosis and MAPK Signaling. International Journal of Molecular Sciences, 2020, 21, 2672.	4.1	10
20	Tat‑aldose reductase prevents dopaminergic neuronal cell death by inhibiting oxidative stress and MAPK activation. International Journal of Molecular Medicine, 2020, 47, 751-760.	4.0	2
21	MicroRNA-22 negatively regulates LPS-induced inflammatory responses by targeting HDAC6 in macrophages. BMB Reports, 2020, 53, 223-228.	2.4	14
22	Tat-indoleamine 2,3-dioxygenase 1 elicits neuroprotective effects on ischemic injury. BMB Reports, 2020, 53, 582-587.	2.4	6
23	Tat-indoleamine 2,3-dioxygenase 1 elicits neuroprotective effects on ischemic injury. BMB Reports, 2020, 53, 582-587.	2.4	1
24	Cellular context-dependent interaction between cancer and stellate cells in hetero-type multicellular spheroids of pancreatic tumor. Biochemical and Biophysical Research Communications, 2019, 515, 183-189.	2.1	5
25	An In Vitro Protocol for Evaluating MicroRNA Levels, Functions, and Associated Target Genes in Tumor Cells. Journal of Visualized Experiments, 2019, , .	0.3	1
26	MicroRNA-107 Targets IKBKG and Sensitizes A549 Cells to Parthenolide. Anticancer Research, 2018, 38, 6309-6316.	1.1	8
27	Three Dimensional Mixed-Cell Spheroids Mimic Stroma-Mediated Chemoresistance and Invasive Migration in hepatocellular carcinoma. Neoplasia, 2018, 20, 800-812.	5.3	79
28	MicroRNAs Targeting Caspase-3 and -7 in PANC-1 Cells. International Journal of Molecular Sciences, 2018, 19, 1206.	4.1	26
29	Combinatorial Antitumor Activity of Oxaliplatin with Epigenetic Modifying Agents, 5-Aza-CdR and FK228, in Human Gastric Cancer Cells. Biomolecules and Therapeutics, 2018, 26, 591-598.	2.4	7
30	Eyeing autophagy and macropinocytosis in the corneal/limbal epithelia. Autophagy, 2017, 13, 975-977.	9.1	8
31	miRâ€184 exhibits angiostatic properties <i>via</i> regulation of Akt and VEGF signaling pathways. FASEB Journal, 2017, 31, 256-265.	0.5	40
32	Crosstalk between Signaling Pathways in Pemphigus: A Role for Endoplasmic Reticulum Stress in p38 Mitogen-Activated Protein Kinase Activation?. Frontiers in Immunology, 2017, 8, 1022.	4.8	16
33	Autophagy and Macropinocytosis: Keeping an Eye on the Corneal/Limbal Epithelia. , 2017, 58, 416.		11
34	A 3′UTR polymorphism marks differential KLRG1 mRNA levels through disruption of a miR-584-5p binding site and associates with pemphigus foliaceus susceptibility. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 1306-1313.	1.9	36
35	MicroRNAs-103/107 coordinately regulate macropinocytosis and autophagy. Journal of Cell Biology, 2016, 215, 667-685.	5.2	38
36	microRNA-103/107 Family Regulates Multiple Epithelial Stem Cell Characteristics. Stem Cells, 2015, 33, 1642-1656.	3.2	46

#	Article	IF	CITATIONS
37	MicroRNAs Enhance Keratinocyte Proliferative Capacity in a Stem Cell-Enriched Epithelium. PLoS ONE, 2015, 10, e0134853.	2.5	12
38	Long-range interaction and correlation between <i>MYC</i> enhancer and oncogenic long noncoding RNA <i>CARLo-5</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4173-4178.	7.1	174
39	MicroRNAs in Cell Death and Cancer. , 2013, , 117-136.		0