Nathalie Gonzalez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4285086/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SIKIX8 and SIKIX9 are negative regulators of leaf and fruit growth in tomato. Plant Physiology, 2022, 188, 382-396.	4.8	12
2	CIN-like TCP13 is essential for plant growth regulation under dehydration stress. Plant Molecular Biology, 2022, 108, 257-275.	3.9	16
3	Zinc Finger-Homeodomain and Mini Zinc Finger proteins are key players in plant growth and responses to environmental stresses. Journal of Experimental Botany, 2022, 73, 4662-4673.	4.8	8
4	The PEAPOD Pathway and Its Potential To Improve Crop Yield. Trends in Plant Science, 2021, 26, 220-236.	8.8	14
5	In search of the still unknown function of FW2.2/CELL NUMBER REGULATOR, a major regulator of fruit size in tomato. Journal of Experimental Botany, 2021, 72, 5300-5311.	4.8	20
6	Complex cellular and molecular events determining fruit size. Trends in Plant Science, 2021, 26, 1023-1038.	8.8	31
7	Comparative transcriptomics enables the identification of functional orthologous genes involved in early leaf growth. Plant Biotechnology Journal, 2020, 18, 553-567.	8.3	24
8	Molecular networks regulating cell division during Arabidopsis leaf growth. Journal of Experimental Botany, 2020, 71, 2365-2378.	4.8	83
9	Emerging Connections between Small RNAs and Phytohormones. Trends in Plant Science, 2020, 25, 912-929.	8.8	43
10	Plant organ and tip growth. Journal of Experimental Botany, 2020, 71, 2363-2364.	4.8	2
11	Understanding plant organ growth: a multidisciplinary field. Journal of Experimental Botany, 2019, 71, 7-10.	4.8	3
12	cis-Cinnamic acid is a natural plant growth-promoting compound. Journal of Experimental Botany, 2019, 70, 6293-6304.	4.8	31
13	A genetics screen highlights emerging roles for CPL3, RST1 and URT1 in RNA metabolism and silencing. Nature Plants, 2019, 5, 539-550.	9.3	23
14	Drought resistance is mediated by divergent strategies in closely related Brassicaceae. New Phytologist, 2019, 223, 783-797.	7.3	34
15	The role of HEXOKINASE1 in Arabidopsis leaf growth. Plant Molecular Biology, 2019, 99, 79-93.	3.9	20
16	At-MINI ZINC FINGER2 and SI-INHIBITOR OF MERISTEM ACTIVITY, a Conserved Missing Link in the Regulation of Floral Meristem Termination in Arabidopsis and Tomato. Plant Cell, 2018, 30, 83-100.	6.6	90
17	Transcriptome profiling of sorted endoreduplicated nuclei from tomato fruits: how the global shift in expression ascribed to <scp>DNA</scp> ploidy influences <scp>RNA</scp> â€Seq data normalization and interpretation. Plant Journal, 2018, <u>93, 387-398.</u>	5.7	39
18	Arabidopsis Leaf Flatness Is Regulated by PPD2 and NINJA through Repression of <i>CYCLIN D3</i> Genes. Plant Physiology, 2018, 178, 217-232.	4.8	50

NATHALIE GONZALEZ

#	Article	IF	CITATIONS
19	STERILE APETALA modulates the stability of a repressor protein complex to control organ size in Arabidopsis thaliana. PLoS Genetics, 2018, 14, e1007218.	3.5	45
20	Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in <i>Arabidopsis</i> . Genes and Development, 2017, 31, 197-208.	5.9	128
21	The Mitochondrial DNA (mtDNA)-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination. Plant Cell, 2017, 29, tpc.00899.2016.	6.6	11
22	Strobilurins as growthâ€promoting compounds: how Stroby regulates Arabidopsis leaf growth. Plant, Cell and Environment, 2017, 40, 1748-1760.	5.7	21
23	Forever Young: The Role of Ubiquitin Receptor DA1 and E3 Ligase BIG BROTHER in Controlling Leaf Growth and Development. Plant Physiology, 2017, 173, 1269-1282.	4.8	55
24	Natural Variation of Molecular and Morphological Gibberellin Responses. Plant Physiology, 2017, 173, 703-714.	4.8	16
25	Phosphorylation of MAP65-1 by Arabidopsis Aurora Kinases Is Required for Efficient Cell Cycle Progression. Plant Physiology, 2017, 173, 582-599.	4.8	44
26	SCFSAP controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana. Nature Communications, 2016, 7, 11192.	12.8	77
27	Chloroplasts Are Central Players in Sugar-Induced Leaf Growth. Plant Physiology, 2016, 171, 590-605.	4.8	67
28	Leaf Growth Response to Mild Drought: Natural Variation in Arabidopsis Sheds Light on Trait Architecture. Plant Cell, 2016, 28, 2417-2434.	6.6	83
29	Functional characterization of the Arabidopsis transcription factor bZIP29 reveals its role in leaf and root development. Journal of Experimental Botany, 2016, 67, 5825-5840.	4.8	78
30	Leaf growth in dicots and monocots: so different yet so alike. Current Opinion in Plant Biology, 2016, 33, 72-76.	7.1	87
31	Plants grow with a little help from their organelle friends. Journal of Experimental Botany, 2016, 67, 6267-6281.	4.8	61
32	Plant Growth Beyond Limits. Trends in Plant Science, 2016, 21, 102-109.	8.8	27
33	AIP1 is a novel Agenet/Tudor domain protein from Arabidopsis that interacts with regulators of DNA replication, transcription and chromatin remodeling. BMC Plant Biology, 2015, 15, 270.	3.6	15
34	The KnownLeaf literature curation system captures knowledge about Arabidopsis leaf growth and development and facilitates integrated data mining. Current Plant Biology, 2015, 2, 1-11.	4.7	7
35	GROWTH REGULATING FACTOR5 Stimulates Arabidopsis Chloroplast Division, Photosynthesis, and Leaf Longevity Â. Plant Physiology, 2015, 167, 817-832.	4.8	100
36	Leaf Responses to Mild Drought Stress in Natural Variants of Arabidopsis Â. Plant Physiology, 2015, 167, 800-816.	4.8	176

NATHALIE GONZALEZ

#	Article	IF	CITATIONS
37	Molecular systems governing leaf growth: from genes to networks. Journal of Experimental Botany, 2015, 66, 1045-1054.	4.8	49
38	A Journey Through a Leaf: Phenomics Analysis of Leaf Growth in <i>Arabidopsis thaliana</i> . The Arabidopsis Book, 2015, 13, e0181.	0.5	130
39	A Repressor Protein Complex Regulates Leaf Growth in Arabidopsis. Plant Cell, 2015, 27, 2273-2287.	6.6	118
40	Role of Arabidopsis UV RESISTANCE LOCUS 8 in Plant Growth Reduction under Osmotic Stress and Low Levels of UV-B. Molecular Plant, 2014, 7, 773-791.	8.3	57
41	The cell-cycle interactome: a source of growth regulators?. Journal of Experimental Botany, 2014, 65, 2715-2730.	4.8	43
42	Highâ€resolution timeâ€resolved imaging of <i>in vitro</i> Arabidopsis rosette growth. Plant Journal, 2014, 80, 172-184.	5.7	41
43	ANGUSTIFOLIA3 Binds to SWI/SNF Chromatin Remodeling Complexes to Regulate Transcription during <i>Arabidopsis</i> Leaf Development. Plant Cell, 2014, 26, 210-229.	6.6	219
44	Combining growth-promoting genes leads to positive epistasis in Arabidopsis thaliana. ELife, 2014, 3, e02252.	6.0	38
45	Exit from Proliferation during Leaf Development in Arabidopsis thaliana: A Not-So-Gradual Process. Developmental Cell, 2012, 22, 64-78.	7.0	361
46	SAMBA, a plant-specific anaphase-promoting complex/cyclosome regulator is involved in early development and A-type cyclin stabilization. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13853-13858.	7.1	80
47	Leaf size control: complex coordination of cell division and expansion. Trends in Plant Science, 2012, 17, 332-340.	8.8	446
48	The <i>SAUR19</i> subfamily of <i>SMALL AUXIN UP RNA</i> genes promote cell expansion. Plant Journal, 2012, 70, 978-990.	5.7	359
49	A comparative study of seed yield parameters in <i>Arabidopsis thaliana</i> mutants and transgenics. Plant Biotechnology Journal, 2012, 10, 488-500.	8.3	42
50	The APC/C <i>subunit 10</i> plays an essential role in cell proliferation during leaf development. Plant Journal, 2011, 68, 351-363.	5.7	99
51	Survival and growth of Arabidopsis plants given limited water are not equal. Nature Biotechnology, 2011, 29, 212-214.	17.5	267
52	Combining Enhanced Root and Shoot Growth Reveals Cross Talk between Pathways That Control Plant Organ Size in Arabidopsis Â. Plant Physiology, 2011, 155, 1339-1352.	4.8	75
53	Increased Leaf Size: Different Means to an End Â. Plant Physiology, 2010, 153, 1261-1279.	4.8	222
54	Hide and seek: uncloaking the vegetative shoot apex of Arabidopsis thaliana. Plant Journal, 2010, 63, 541-548.	5.7	9

NATHALIE GONZALEZ

#	Article	IF	CITATIONS
55	David and Goliath: what can the tiny weed Arabidopsis teach us to improve biomass production in crops?. Current Opinion in Plant Biology, 2009, 12, 157-164.	7.1	93
56	Impact of segmental chromosomal duplications on leaf size in the <i>grandifoliaâ€Ð</i> mutants of <i>Arabidopsis thaliana</i> . Plant Journal, 2009, 60, 122-133.	5.7	46
57	The cell cycle-associated protein kinase WEE1 regulates cell size in relation to endoreduplication in developing tomato fruit. Plant Journal, 2007, 51, 642-655.	5.7	113
58	Molecular characterization of a WEE1 gene homologue in tomato (Lycopersicon esculentum Mill.). Plant Molecular Biology, 2004, 56, 849-861.	3.9	47
59	Flower development schedule in tomato Lycopersicon esculentum cv. sweet cherry. Sexual Plant Reproduction, 2003, 15, 311-320.	2.2	144