
Wolfgang Kummer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4285031/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CXCL13 is expressed in a subpopulation of neuroendocrine cells in the murine trachea and lung. Cell and Tissue Research, 2022, 390, 35-49.	1.5	2
2	Cysteinyl leukotrienes and acetylcholine are biliary tuft cell cotransmitters. Science Immunology, 2022, 7, eabf6734.	5.6	16
3	Development of epithelial cholinergic chemosensory cells of the urethra and trachea of mice. Cell and Tissue Research, 2021, 385, 21-35.	1.5	9
4	Olfactory receptor Olfr78 (prostate-specific G protein-coupled receptor PSGR) expression in arterioles supplying skeletal and cardiac muscles and in arterioles feeding some murine organs. Histochemistry and Cell Biology, 2021, , 1.	0.8	4
5	Acute nicotine administration stimulates ciliary activity via α3β4 nAChR in the mouse trachea. International Immunopharmacology, 2020, 84, 106496.	1.7	8
6	Advillin is a tuft cell marker in the mouse alimentary tract. Journal of Molecular Histology, 2020, 51, 421-435.	1.0	9
7	Chemosensory Cell-Derived Acetylcholine Drives Tracheal Mucociliary Clearance in Response to Virulence-Associated Formyl Peptides. Immunity, 2020, 52, 683-699.e11.	6.6	63
8	Multilineage murine stem cells generate complex organoids to model distal lung development and disease. EMBO Journal, 2020, 39, e103476.	3.5	44
9	The curious case of ligamentum arteriosum: It is more than a ligament. FASEB Journal, 2020, 34, 1-1.	0.2	Ο
10	Bordetella pseudohinzii targets cilia and impairs tracheal cilia-driven transport in naturally acquired infection in mice. Scientific Reports, 2018, 8, 5681.	1.6	13
11	The sympathetic nervous system: malignancy, disease, and novel functions. Cell and Tissue Research, 2018, 372, 163-170.	1.5	12
12	Sphingosine Kinase 1 Regulates Inflammation and Contributes to Acute Lung Injury in Pneumococcal Pneumonia via the Sphingosine-1-Phosphate Receptor 2. Critical Care Medicine, 2018, 46, e258-e267.	0.4	16
13	Hypoxiaâ€induced pulmonary vasoconstriction of intraâ€acinar arteries is impaired in NADPH oxidase 4 geneâ€deficient mice. Pulmonary Circulation, 2018, 8, 1-4.	0.8	4
14	β-Nicotinamide Adenine Dinucleotide (β-NAD) Inhibits ATP-Dependent IL-1β Release from Human Monocytic Cells. International Journal of Molecular Sciences, 2018, 19, 1126.	1.8	14
15	Muscarinic receptors 2 and 5 regulate bitter response of urethral brush cells <i>via</i> negative feedback. FASEB Journal, 2018, 32, 2903-2910.	0.2	7
16	ENaC in Cholinergic Brush Cells. Frontiers in Cell and Developmental Biology, 2018, 6, 89.	1.8	6
17	Caveolin-3 differentially orchestrates cholinergic and serotonergic constriction of murine airways. Scientific Reports, 2018, 8, 7508.	1.6	4
18	Substance P Receptor in the Rat Heart and Regulation of Its Expression in Long-Term Diabetes. Frontiers in Physiology, 2018, 9, 918.	1.3	5

#	Article	IF	CITATIONS
19	C-Reactive Protein Stimulates Nicotinic Acetylcholine Receptors to Control ATP-Mediated Monocytic Inflammasome Activation. Frontiers in Immunology, 2018, 9, 1604.	2.2	45
20	Brush cells, the newly identified gatekeepers of the urinary tract. Current Opinion in Urology, 2017, 27, 85-92.	0.9	21
21	Caveolin-1: Functional Insights into Its Role in Muscarine- and Serotonin-Induced Smooth Muscle Constriction in Murine Airways. Frontiers in Physiology, 2017, 8, 295.	1.3	7
22	Nicotinic Acetylcholine Receptor α9 and α10 Subunits Are Expressed in the Brain of Mice. Frontiers in Cellular Neuroscience, 2017, 11, 282.	1.8	27
23	TASK-1 potassium channel is not critically involved in mediating hypoxic pulmonary vasoconstriction of murine intra-pulmonary arteries. PLoS ONE, 2017, 12, e0174071.	1.1	24
24	Calcitonin Peptide Family Members Are Differentially Regulated by LPS and Inhibit Functions of Rat Alveolar NR8383 Macrophages. PLoS ONE, 2016, 11, e0163483.	1.1	7
25	Chemosensory epithelial cells in the urethra: sentinels of the urinary tract. Histochemistry and Cell Biology, 2016, 146, 673-683.	0.8	25
26	Spatial expression of components of a calcitonin receptor-like receptor (CRL) signalling system (CRL,) Tj ETQq0 (heart valves. Cell and Tissue Research, 2016, 366, 587-599.	0 0 rgBT /0 1.5	Overlock 10 Tf 2
27	Expression and localization of GPR91 and GPR99 in murine organs. Cell and Tissue Research, 2016, 364, 245-262.	1.5	36
28	Chemical coding and chemosensory properties of cholinergic brush cells in the mouse gastrointestinal and biliary tract. Frontiers in Physiology, 2015, 6, 87.	1.3	91
29	Suitability of Nicotinic Acetylcholine Receptor α7 and Muscarinic Acetylcholine Receptor 3 Antibodies for Immune Detection. Journal of Histochemistry and Cytochemistry, 2015, 63, 329-339.	1.3	21
30	Cholinergic urethral brush cells are widespread throughout placental mammals. International Immunopharmacology, 2015, 29, 51-56.	1.7	22
31	Identification of cholinergic chemosensory cells in mouse tracheal and laryngeal glandular ducts. International Immunopharmacology, 2015, 29, 158-165.	1.7	15
32	Phosphocholine-Modified Macromolecules and Canonical Nicotinic Agonists Inhibit ATP-Induced IL-1β Release. Journal of Immunology, 2015, 195, 2325-2334.	0.4	80
33	Cholinergic chemosensory cells of the thymic medulla express the bitter receptor Tas2r131. International Immunopharmacology, 2015, 29, 143-147.	1.7	21
34	AzoCholine Enables Optical Control of Alpha 7 Nicotinic Acetylcholine Receptors in Neural Networks. ACS Chemical Neuroscience, 2015, 6, 701-707.	1.7	49
35	Cholinergic activation of the murine trachealis muscle via non-vesicular acetylcholine release involving low-affinity choline transporters. International Immunopharmacology, 2015, 29, 173-180.	1.7	13
36	Luminal acetylcholine does not affect the activity of the CFTR in tracheal epithelia of pigs. International Immunopharmacology, 2015, 29, 166-172.	1.7	4

#	Article	IF	CITATIONS
37	Recent progress in revealing the biological and medical significance of the non-neuronal cholinergic system. International Immunopharmacology, 2015, 29, 1-7.	1.7	32
38	A novel cholinergic epithelial cell with chemosensory traits in the murine conjunctiva. International Immunopharmacology, 2015, 29, 45-50.	1.7	12
39	Mental Stress in Atopic Dermatitis – Neuronal Plasticity and the Cholinergic System Are Affected in Atopic Dermatitis and in Response to Acute Experimental Mental Stress in a Randomized Controlled Pilot Study. PLoS ONE, 2014, 9, e113552.	1.1	72
40	Adrenomedullin and the calcitonin receptor-like receptor system mRNA expressions in the rat heart and sensory ganglia in experimentally-induced long-term diabetes. General Physiology and Biophysics, 2014, 33, 215-255.	0.4	4
41	Bitter triggers acetylcholine release from polymodal urethral chemosensory cells and bladder reflexes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8287-8292.	3.3	134
42	Terminally Differentiated Epithelial Cells of the Thymic Medulla and Skin Express Nicotinic Acetylcholine Receptor Subunitα3. BioMed Research International, 2014, 2014, 1-9.	0.9	5
43	Non-neuronal cholinergic airway epithelium biology. Current Opinion in Pharmacology, 2014, 16, 43-49.	1.7	62
44	Cholinergic epithelial cell with chemosensory traits in murine thymic medulla. Cell and Tissue Research, 2014, 358, 737-748.	1.5	52
45	Low-dose adrenomedullin-2/intermedin(8–47) reduces pulmonary ischemia/reperfusion injury. Peptides, 2014, 62, 49-54.	1.2	5
46	Effects of Lewis lung carcinoma and B16 melanoma on the innervation of the mouse trachea. Autonomic Neuroscience: Basic and Clinical, 2014, 183, 106-110.	1.4	2
47	Videomorphometric Analysis of Hypoxic Pulmonary Vasoconstriction of Intra-pulmonary Arteries Using Murine Precision Cut Lung Slices. Journal of Visualized Experiments, 2014, , e50970.	0.2	18
48	Cilia-driven particle and fluid transport over mucus-free mice tracheae. Journal of Biomechanics, 2013, 46, 593-598.	0.9	25
49	Expression of nicotinic acetylcholine receptor subunit mRNA in mouse bladder afferent neurons. Neuroscience, 2013, 229, 27-35.	1.1	17
50	Examination of luminal acetylcholine on CFTR activity in porcine airway epithelium. FASEB Journal, 2013, 27, .	0.2	0
51	Ciliary Activity in the Oviduct of Cycling, Pregnant, and Muscarinic Receptor Knockout Mice1. Biology of Reproduction, 2012, 86, 120.	1.2	29
52	Evidence for Functional Atypical Nicotinic Receptors That Activate K ⁺ –Dependent Cl ^{â^²} Secretion in Mouse Tracheal Epithelium. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 106-114.	1.4	21
53	Luminal cholinergic signalling in airway lining fluid: a novel mechanism for activating chloride secretion via Ca ²⁺ â€dependent Cl ^{â€} and K ⁺ channels. British Journal of Pharmacology, 2012, 166, 1388-1402.	2.7	23
54	Stereological characterization of left ventricular cardiomyocytes, capillaries, and innervation in the nondiabetic, obese mouse. Cardiovascular Pathology, 2012, 21, 346-354.	0.7	18

#	Article	IF	CITATIONS
55	Cholinergic receptors in the murine oviduct: Inventory and coupling to intracellular calcium concentration. Life Sciences, 2012, 91, 1003-1008.	2.0	4
56	Does bladder outlet obstruction alter the non-neuronal cholinergic system of the human urothelium?. Life Sciences, 2012, 91, 1082-1086.	2.0	11
57	Cholinergic brush cells in the trachea mediate respiratory responses to quorum sensing molecules. Life Sciences, 2012, 91, 992-996.	2.0	75
58	Nicotine-induced activation of soluble adenylyl cyclase participates in ion transport regulation in mouse tracheal epithelium. Life Sciences, 2012, 91, 1009-1012.	2.0	9
59	"Tasting―the airway lining fluid. Histochemistry and Cell Biology, 2012, 138, 365-383.	0.8	48
60	Cholinergic chemosensory cells in the auditory tube. Histochemistry and Cell Biology, 2012, 137, 483-497.	0.8	49
61	T243 AUTOIMMUNITY AGAINST THE BETA2 ADRENERGIC RECEPTOR AND MUSCARINIC 2 RECEPTOR IN COMPLEX REGIONAL PAIN SYNDROME. European Journal of Pain Supplements, 2011, 5, 48-48.	0.0	1
62	Cholinergic chemosensory cells in the trachea regulate breathing. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9478-9483.	3.3	233
63	The cholinergic system in rat testis is of non-neuronal origin. Reproduction, 2011, 142, 157-166.	1.1	42
64	Pulmonary Vascular Innervation and Its Role in Responses to Hypoxia: Size Matters!. Proceedings of the American Thoracic Society, 2011, 8, 471-476.	3.5	47
65	An unbiased stereological method for efficiently quantifying the innervation of the heart and other organs based on total length estimations. Journal of Applied Physiology, 2010, 108, 1402-1409.	1.2	24
66	Nicotinic receptors on rat alveolar macrophages dampen ATP-induced increase in cytosolic calcium concentration. Respiratory Research, 2010, 11, 133.	1.4	44
67	Muscarinic receptor-mediated bronchoconstriction is coupled to caveolae in murine airways. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L626-L636.	1.3	24
68	Muscarinic acetylcholine receptor subtypes expressed by mouse bladder afferent neurons. Neuroscience, 2010, 168, 842-850.	1.1	41
69	Mitochondrial complex II participates in normoxic and hypoxic regulation of α-keto acids in the murine heart. Journal of Molecular and Cellular Cardiology, 2010, 49, 950-961.	0.9	7
70	Muscarinic receptor subtypes in cilia-driven transport and airway epithelial development. European Respiratory Journal, 2009, 33, 1113-1121.	3.1	54
71	Pivotal Advance: Up-regulation of acetylcholine synthesis and paracrine cholinergic signaling in intravascular transplant leukocytes during rejection of rat renal allografts. Journal of Leukocyte Biology, 2009, 86, 13-22.	1.5	45
72	Suitability of muscarinic acetylcholine receptor antibodies for immunohistochemistry evaluated on tissue sections of receptor gene-deficient mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 2009, 379, 389-395.	1.4	131

#	Article	IF	CITATIONS
73	Presence of α7 nicotinic acetylcholine receptors on dorsal root ganglion neurons proved using knockout mice and selective αâ€neurotoxins in histochemistry. Journal of Neurochemistry, 2009, 109, 1087-1095.	2.1	24
74	Serotonin Increases Cilia-Driven Particle Transport via an Acetylcholine-Independent Pathway in the Mouse Trachea. PLoS ONE, 2009, 4, e4938.	1.1	34
75	The epithelial cholinergic system of the airways. Histochemistry and Cell Biology, 2008, 130, 219-34.	0.8	174
76	Reduced expression of nicotinic α subunits 3, 7, 9 and 10 in lesional and nonlesional atopic dermatitis skin but enhanced expression of α subunits 3 and 5 in mast cells. British Journal of Dermatology, 2008, 159, 847-857.	1.4	34
77	Expression of neuropeptide Y and its receptors Y1 and Y2 in the rat heart and its supplying autonomic and spinal sensory ganglia in experimentally induced diabetes. Neuroscience, 2008, 151, 1016-1028.	1.1	31
78	Neuropeptide Y Is Expressed by Rat Mononuclear Blood Leukocytes and Strongly Down-Regulated during Inflammation. Journal of Immunology, 2008, 181, 6906-6912.	0.4	30
79	Hypoxia-Dependent Regulation of Nonphagocytic NADPH Oxidase Subunit NOX4 in the Pulmonary Vasculature. Circulation Research, 2007, 101, 258-267.	2.0	317
80	Expression of the muscle specific caveolin-isoform, cav-3, in mouse sensory neurons. Autonomic Neuroscience: Basic and Clinical, 2007, 135, 69.	1.4	1
81	Caveolin-3 and eNOS colocalize and interact in ciliated airway epithelial cells in the rat. International Journal of Biochemistry and Cell Biology, 2007, 39, 615-625.	1.2	17
82	Administration of keratinocyte growth factor down-regulates the pulmonary capacity of acetylcholine production. International Journal of Biochemistry and Cell Biology, 2007, 39, 1955-1963.	1.2	6
83	Administration of keratinocyte growth factor (KGF) modulates the pulmonary expression of nicotinic acetylcholine receptor subunits 1±7, 1±9 and 1±10. Life Sciences, 2007, 80, 2290-2293.	2.0	15
84	Down-regulation of the non-neuronal acetylcholine synthesis and release machinery in acute allergic airway inflammation of rat and mouse. Life Sciences, 2007, 80, 2263-2269.	2.0	59
85	Immunohistochemical detection of nicotinic acetylcholine receptor subunits α9 and α10 in rat lung isografts and allografts. Life Sciences, 2007, 80, 2286-2289.	2.0	10
86	Expression of muscarinic and nicotinic acetylcholine receptors in the mouse urothelium. Life Sciences, 2007, 80, 2308-2313.	2.0	86
87	Expression and distribution of cholinergic receptors in the human urothelium. Life Sciences, 2007, 80, 2303-2307.	2.0	125
88	TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells. BMC Neuroscience, 2007, 8, 49.	0.8	198
89	Acetylcholine and Molecular Components of its Synthesis and Release Machinery in the Urothelium. European Urology, 2007, 51, 1042-1053.	0.9	129
90	Caveolin-1 and -2 in airway epithelium: expression and in situ association as detected by FRET-CLSM. Respiratory Research, 2006, 7, 108.	1.4	22

#	Article	IF	CITATIONS
91	Role of acetylcholine and polyspecific cation transporters in serotonin-induced bronchoconstriction in the mouse. Respiratory Research, 2006, 7, 65.	1.4	68
92	Non-neuronal acetylcholine release and its contribution to COPD pathology. Drug Discovery Today Disease Mechanisms, 2006, 3, 47-52.	0.8	10
93	Hypobaric hypoxia affects endogenous levels of α-keto acids in murine heart ventricles. Biochemical and Biophysical Research Communications, 2006, 342, 935-939.	1.0	11
94	FRET–CLSM and double-labeling indirect immunofluorescence to detect close association of proteins in tissue sections. Laboratory Investigation, 2006, 86, 853-864.	1.7	45
95	Expression of Nicotinic Acetylcholine Receptors on Murine Alveolar Macrophages. Journal of Molecular Neuroscience, 2006, 30, 107-108.	1.1	43
96	Coexpression and Spatial Association of Nicotinic Acetylcholine Receptor Subunits α7 and α10 in Rat Sympathetic Neurons. Journal of Molecular Neuroscience, 2006, 30, 15-16.	1.1	26
97	Nicotinic Acetylcholine Receptors Containing Subunits α3 and α5 in Rat Nociceptive Dorsal Root Ganglion Neurons. Journal of Molecular Neuroscience, 2006, 30, 55-56.	1.1	17
98	Role of Acetylcholine and Muscarinic Receptors in Serotonin-Induced Bronchoconstriction in the Mouse. Journal of Molecular Neuroscience, 2006, 30, 67-68.	1.1	24
99	Down-regulation of vasoactive intestinal peptide and altered expression of its receptors in rat diabetic cardiomyopathy. Cell and Tissue Research, 2006, 323, 383-393.	1.5	20
100	Hypoxia induces production of nitric oxide and reactive oxygen species in glomus cells of rat carotid body. Cell and Tissue Research, 2006, 325, 3-11.	1.5	35
101	Nicotinic acetylcholine receptors in rat and human placenta. Placenta, 2005, 26, 735-746.	0.7	100
102	MHC class II antigen-expressing cells in cardiac ganglia of the rat. Cell and Tissue Research, 2005, 319, 37-48.	1.5	1
103	Polyspecific Cation Transporters Mediate Luminal Release of Acetylcholine from Bronchial Epithelium. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 79-88.	1.4	201
104	Cardiomyopathy in streptozotocin-induced diabetes involves intra-axonal accumulation of calcitonin gene-related peptide and altered expression of its receptor in rats. Neuroscience, 2005, 134, 51-58.	1.1	27
105	Activation of the SPHK/S1P signalling pathway is coupled to muscarinic receptor-dependent regulation of peripheral airways. Respiratory Research, 2005, 6, 48.	1.4	35
106	Expression of the cholinergic gene locus in the rat placenta. Histochemistry and Cell Biology, 2004, 122, 121-30.	0.8	26
107	Nicotinic receptor mediated stimulation of NO-generation in neurons of rat thoracic dorsal root ganglia. Neuroscience Letters, 2004, 361, 32-35.	1.0	27
108	Nicotinic acetylcholine receptor subtypes in nociceptive dorsal root ganglion neurons of the adult rat. Autonomic Neuroscience: Basic and Clinical, 2004, 113, 32-42.	1.4	72

#	Article	IF	CITATIONS
109	Nicotinic receptor alpha7-subunits are coupled to the stimulation of nitric oxide synthase in rat dorsal root ganglion neurons. Histochemistry and Cell Biology, 2003, 120, 173-181.	0.8	35
110	Expression and distribution of the calcitonin receptor-like receptor in the developing rat heart. Anatomy and Embryology, 2003, 207, 307-315.	1.5	7
111	Altered production of nitric oxide and reactive oxygen species in rat nodose ganglion neurons during acute hypoxia. Brain Research, 2003, 961, 1-9.	1.1	44
112	Rat arteries contain multiple nicotinic acetylcholine receptor α-subunits. Life Sciences, 2003, 72, 2095-2099.	2.0	33
113	Expression of the high-affinity choline transporter CHT1 in epithelia. Life Sciences, 2003, 72, 2087-2090.	2.0	20
114	Role of Muscarinic Receptor Subtypes in the Constriction of Peripheral Airways: Studies on Receptor-Deficient Mice. Molecular Pharmacology, 2003, 64, 1444-1451.	1.0	104
115	Expression of the High-Affinity Choline Transporter, CHT1, in the Rat Trachea. American Journal of Respiratory Cell and Molecular Biology, 2003, 28, 473-477.	1.4	47
116	Essential role of complex II of the respiratory chain in hypoxia-induced ROS generation in the pulmonary vasculature. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 284, L710-L719.	1.3	148
117	Role of ROS and NO in Hypoxia-induced Increase in Tyrosine Hydroxylase-messenger RNA in PC12 cells. Advances in Experimental Medicine and Biology, 2003, 536, 193-199.	0.8	0
118	Subcellular Localization and Function of B-Type Cytochromes in Carotid Body and Other Paraganglionic Cells. Advances in Experimental Medicine and Biology, 2002, 475, 371-375.	0.8	5
119	Coexpression of α9 and α10 nicotinic acetylcholine receptors in rat dorsal root ganglion neurons. Neuroscience, 2002, 115, 1-5.	1.1	108
120	Sensory Neurons Respond to Hypoxia with NO Production Associated with Mitochondria. Molecular and Cellular Neurosciences, 2002, 20, 307-322.	1.0	46
121	Cellular distribution of oxygen sensor candidates?Oxidases, cytochromes, K+-channels?in the carotid body. Microscopy Research and Technique, 2002, 59, 234-242.	1.2	16
122	Multiple nicotinic acetylcholine receptor α-subunits are expressed in the arterial system of the rat. Histochemistry and Cell Biology, 2002, 118, 441-447.	0.8	43
123	Transient expression of vanilloid receptor subtypeÂ1 in rat cardiomyocytes during development. Histochemistry and Cell Biology, 2001, 116, 223-225.	0.8	28
124	Immunohistochemical detection of calcitonin gene-related peptide receptor (CGRPR)–1 in the endothelium of human coronary artery and bronchial blood vessels. Neuropeptides, 2001, 35, 58-64.	0.9	32
125	NOSIP, a novel modulator of endothelial nitric oxide synthase activity. FASEB Journal, 2001, 15, 79-89.	0.2	164
126	Immunostaining and Laser-Assisted Cell Picking for mRNA Analysis. Laboratory Investigation, 2000, 80, 327-333.	1.7	57

#	Article	IF	CITATIONS
127	Macrophages: a major source of cytochrome b558 in the rat carotid body. Brain Research, 2000, 852, 349-354.	1.1	32
128	Expression of the cholinergic gene locus in pulmonary arterial endothelial cells. Histochemistry and Cell Biology, 2000, 113, 379-387.	0.8	43
129	NADPH oxidase subunits and superoxide production in porcine pulmonary artery endothelial cells. Histochemistry and Cell Biology, 2000, 114, 29-37.	0.8	52
130	M2-Receptor Subtype Does Not Mediate Muscarine-Induced Increases in [Ca2+]i in Nociceptive Neurons of Rat Dorsal Root Ganglia. Journal of Neurophysiology, 2000, 84, 1934-1941.	0.9	30
131	Cytochrome b558 (p22phox) in the guinea-pig adrenal medulla. , 1999, 47, 215-220.		3
132	Smooth muscle cells are the site of neurokinin-1 receptor localization in the arterial supply of the rat sciatic nerve. Neuroscience Letters, 1999, 259, 119-122.	1.0	12
133	Muscarinic M2-receptors in rat thoracic dorsal root ganglia. Neuroscience Letters, 1999, 266, 177-180.	1.0	24
134	Hypoxic upregulation of tyrosine hydroxylase gene expression is paralleled, but not induced, by increased generation of reactive oxygen species in PC12 cells. FEBS Letters, 1999, 457, 53-56.	1.3	36
135	Rat sensory neurons contain cytochrome b558 large subunit immunoreactivity. NeuroReport, 1999, 10, 2615-2617.	0.6	14
136	Evidence for an esophageal origin of VIP-IR and NO synthase-IR nerves innervating the guinea pig trachealis: A retrograde neuronal tracing and immunohistochemical analysis. , 1998, 394, 326-334.		52
137	Rat cardiac neurons express the non-coding R-exon (exon 1) of the cholinergic gene locus. NeuroReport, 1998, 9, 2209-2212.	0.6	19
138	Nociceptin and its receptor in guinea-pig sympathetic ganglia. Neuroscience Letters, 1997, 234, 35-38.	1.0	19
139	Innervation pattern of guinea pig pulmonary vasculature depends on vascular diameter. Journal of Applied Physiology, 1997, 82, 426-434.	1.2	43
140	Cobalt and desferrioxamine reveal crucial members of the oxygen sensing pathway in HepG2 cells. Kidney International, 1997, 51, 483-491.	2.6	77
141	Cytochrome b 558 and hydrogen peroxide production in small intensely fluorescent cells of sympathetic ganglia. Histochemistry and Cell Biology, 1997, 107, 151-158.	0.8	8
142	Heme oxygenase-2 in primary afferent neurons of the guinea-pig. Histochemistry and Cell Biology, 1996, 105, 453-458.	0.8	20
143	β2-Adrenoreceptor immunoreactivity in cardiac ganglia of the guinea pig. The Histochemical Journal, 1996, 28, 827-833.	0.6	7
144	Localization, regulation and functions of neurotransmitters and neuromodulators in cervical sympathetic ganglia. Microscopy Research and Technique, 1996, 35, 44-68.	1.2	47

#	Article	IF	CITATIONS
145	Plasticity of the Afferent Innervation of the Airways. Pulmonary Pharmacology, 1995, 8, 169-172.	0.5	3
146	Nitric oxide synthase in guinea pig sympathetic ganglia: Correlation with tyrosine hydroxylase and neuropeptides. Histochemistry and Cell Biology, 1995, 104, 21-28.	0.8	28
147	Immunohistochemical demonstration of four subunits of neutrophil NAD(P)H oxidase in type I cells of carotid body. Journal of Applied Physiology, 1995, 78, 1904-1909.	1.2	87
148	Innervation of Epi- and Endoneurial Compartments of Rat Facial, Vagus and Sciatic Nerves as Studied by Double-Labeling Immunofluorescence. Cells Tissues Organs, 1994, 149, 264-271.	1.3	7
149	Effect of catecholamine depletion and denervation on neuropeptide Y(NPY) and tyrosine-hydroxylase (TH) mRNA levels in rat sympathetic ganglia. Experimental and Clinical Endocrinology and Diabetes, 1994, 102, 54-59.	0.6	15
150	Light-and Electronmicroscopical Immunohistochemical Investigation of the Innervation of the Human Carotid Body. Advances in Experimental Medicine and Biology, 1993, 337, 67-71.	0.8	3
151	Nitric oxide synthase in VIP-containing vasodilator nerve fibres in the Guineapig. NeuroReport, 1992, 3, 653.	0.6	145
152	The sensory and sympathetic innervation of guinea-pig lung and trachea as studied by retrograde neuronal tracing and double-labelling immunohistochemistry. Neuroscience, 1992, 49, 715-737.	1.1	277
153	Chemoreceptor A-fibres in the human carotid body contain tyrosine hydroxylase and neurofilament immunoreactivity. Neuroscience, 1992, 47, 713-725.	1.1	27
154	Tissue distribution of neutral endopeptidase 24.11 (â€~enkephalinase') activity in guinea pig trachea. Neuropeptides, 1991, 18, 181-186.	0.9	26
155	Catecholamines and catecholamine-synthesizing enzymes in guinea-pig sensory ganglia. Cell and Tissue Research, 1990, 261, 595-606.	1.5	87
156	Three types of neurochemically defined autonomic fibres innervate the carotid baroreceptor and chemoreceptor regions in the guinea-pig. Anatomy and Embryology, 1990, 181, 477-489.	1.5	18
157	Simultaneous immunohistochemical demonstration of vasoactive intestinal polypeptide and its receptor in human colon. The Histochemical Journal, 1990, 22, 249-256.	0.6	7
158	Neuronal pathways in the guinea-pig lumbar sympathetic ganglia as revealed by immunohistochemistry. Histochemistry, 1990, 93, 547-557.	1.9	37
159	Vagal paraganglia of the rat. Journal of Electron Microscopy Technique, 1989, 12, 343-355.	1.1	33
160	Ultrastructure of calcitonin gene-related peptide-and substance P-like immunoreactive nerve fibres in the carotid body and carotid sinus of the guinea pig. Histochemistry, 1989, 92, 433-439.	1.9	37
161	Carcinoid tumors of the thymus. An immunohistochemical study. Cancer, 1987, 60, 2465-2470.	2.0	56
162	Immunohistochemical evidence for extrinsic and intrinsic opioid systems in the guinea pig superior cervical ganglion. Anatomy and Embryology, 1986, 174, 401-405.	1.5	33