Agatha De Boer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4283928/publications.pdf

Version: 2024-02-01

42 papers 1,884 citations

279798 23 h-index 289244 40 g-index

45 all docs

45 docs citations

45 times ranked

2544 citing authors

#	Article	IF	CITATIONS
1	Southern Hemisphere westerly wind changes during the Last Glacial Maximum: paleo-data synthesis. Quaternary Science Reviews, 2013, 68, 76-95.	3.0	238
2	The Miocene: The Future of the Past. Paleoceanography and Paleoclimatology, 2021, 36, e2020PA004037.	2.9	166
3	Southern Hemisphere westerly wind changes during the Last Glacial Maximum: model-data comparison. Quaternary Science Reviews, 2013, 64, 104-120.	3.0	121
4	The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons. Climate of the Past, 2021, 17, 269-315.	3.4	90
5	Post-glacial flooding of the Bering Land Bridge dated to 11 cal ka BP based on new geophysical and sediment records. Climate of the Past, 2017, 13, 991-1005.	3.4	85
6	Southern Ocean fronts: Controlled by wind or topography?. Journal of Geophysical Research, 2012, 117, .	3.3	80
7	DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data. Climate of the Past, 2021, 17, 203-227.	3.4	71
8	Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), Paleocene–Eocene Thermal Maximum (PETM), and latest Paleocene. Climate of the Past, 2020, 16, 1953-1968.	3.4	71
9	Atlantic-Pacific Asymmetry in Deep Water Formation. Annual Review of Earth and Planetary Sciences, 2018, 46, 327-352.	11.0	68
10	The Bering Strait's grip on the northern hemisphere climate. Deep-Sea Research Part I: Oceanographic Research Papers, 2004, 51, 1347-1366.	1.4	67
11	Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation. Nature Geoscience, 2018, 11, 190-196.	12.9	67
12	Inferring source regions and supply mechanisms of iron in the Southern Ocean from satellite chlorophyll data. Deep-Sea Research Part I: Oceanographic Research Papers, 2015, 104, 9-25.	1.4	61
13	Effect of global ocean temperature change on deep ocean ventilation. Paleoceanography, 2007, 22, .	3.0	59
14	The Dynamical Subtropical Front. Journal of Geophysical Research: Oceans, 2013, 118, 5676-5685.	2.6	57
15	Atlantic Dominance of the Meridional Overturning Circulation. Journal of Physical Oceanography, 2008, 38, 435-450.	1.7	55
16	The Exhaust Valve of the North Atlantic. Journal of Climate, 2004, 17, 417-422.	3.2	54
17	Meridional Density Gradients Do Not Control the Atlantic Overturning Circulation. Journal of Physical Oceanography, 2010, 40, 368-380.	1.7	54
18	Simulating Miocene Warmth: Insights From an Opportunistic Multiâ€Model Ensemble (MioMIP1). Paleoceanography and Paleoclimatology, 2021, 36, e2020PA004054.	2.9	52

#	Article	IF	Citations
19	Climate sensitivity and meridional overturning circulation in the late Eocene using GFDL CM2.1. Climate of the Past, 2018, 14, 789-810.	3.4	49
20	The control of the Southern Hemisphere Westerlies on the position of the Subtropical Front. Journal of Geophysical Research: Oceans, 2013, 118, 5669-5675.	2.6	48
21	Spatial and Temporal Scales of Sverdrup Balance*. Journal of Physical Oceanography, 2014, 44, 2644-2660.	1.7	38
22	Sea ice led to poleward-shifted winds at the Last Glacial Maximum: the influence of state dependency on CMIP5 and PMIP3 models. Climate of the Past, 2016, 12, 2241-2253.	3.4	37
23	Synchronous records of pCO2 and î"14C suggest rapid, ocean-derived pCO2 fluctuations at the onset of Younger Dryas. Quaternary Science Reviews, 2014, 99, 84-96.	3.0	26
24	Does the Atlantic meridional overturning cell really have more than one stable steady state?. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54, 2005-2021.	1.4	20
25	Control of the glacial carbon budget by topographically induced mixing. Geophysical Research Letters, 2014, 41, 4277-4284.	4.0	19
26	Hydrological impact of Middle Miocene Antarctic ice-free areas coupled to deep ocean temperatures. Nature Geoscience, 2021, 14, 429-436.	12.9	16
27	Upper ocean manifestations of a reducing meridional overturning circulation. Geophysical Research Letters, 2012, 39, .	4.0	15
28	A simple theory of the pycnocline and overturning revisited. Geophysical Monograph Series, 2007, , $19-32$.	0.1	14
29	Antarctic stratification, atmospheric water vapor, and Heinrich Events: A hypothesis for Late Pleistocene deglaciations. Geophysical Monograph Series, 2007, , 335-349.	0.1	14
30	A multi-variable box model approach to the soft tissue carbon pump. Climate of the Past, 2010, 6, 827-841.	3.4	11
31	Early Eocene Ocean Meridional Overturning Circulation: The Roles of Atmospheric Forcing and Strait Geometry. Paleoceanography and Paleoclimatology, 2022, 37, .	2.9	11
32	Interconnectivity Between Volume Transports Through Arctic Straits. Journal of Geophysical Research: Oceans, 2018, 123, 8714-8729.	2.6	10
33	From the Southern Ocean to the North Atlantic in the Ekman Layer?. Bulletin of the American Meteorological Society, 2004, 85, 79-88.	3.3	9
34	Inferring the zonal distribution of measured changes in the meridional overturning circulation. Ocean Science, 2007, 3, 55-57.	3.4	7
35	Processes driving thunderstorms over the Agulhas Current. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2220-2228.	3.3	6
36	The island wind-buoyancy connection. Tellus, Series A: Dynamic Meteorology and Oceanography, 2005, 57, 783-797.	1.7	3

#	Article	IF	CITATIONS
37	Measurements of total alkalinity and inorganic dissolved carbon in the Atlantic Ocean and adjacent Southern Ocean between 2008 and 2010. Earth System Science Data, 2014, 6, 175-183.	9.9	3
38	African Hydroclimate During the Early Eocene From the DeepMIP Simulations. Paleoceanography and Paleoclimatology, 2022, 37, .	2.9	3
39	Sea change. Nature Geoscience, 2010, 3, 668-669.	12.9	2
40	Would Title IX Help Women in Science?. Science, 2002, 298, 1891-1892.	12.6	0
41	The island wind'buoyancy connection. Tellus, Series A: Dynamic Meteorology and Oceanography, 2005, 57, 783-797.	1.7	O

Response to: Comment on "Synchronous records of pCO2 and Δ14C suggest rapid, ocean-derived pCO2 fluctuations at the onset of Younger Dryas―(Steinthorsdottir etÂal., 2014, Quaternary Science Reviews) Tj ETQq®®0 rgBT ©verlock 1 42