
Dusica Bajic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4283670/publications.pdf Version: 2024-02-01

DUSICA RAUC

#	Article	lF	CITATIONS
1	From the Ground Up: Esophageal Atresia Types, Disease Severity Stratification and Survival Rates at a Single Institution. Frontiers in Surgery, 2022, 9, 799052.	0.6	11
2	Impact of Infant Thoracic Non-cardiac Perioperative Critical Care on Homotopic-Like Corpus Callosum and Forebrain Sub-regional Volumes. Frontiers in Pain Research, 2022, 3, 788903.	0.9	2
3	Head circumference in infants undergoing Foker process for long-gap esophageal atresia repair: Call for attention. Journal of Pediatric Surgery, 2021, 56, 1564-1569.	0.8	3
4	Infant study of hemispheric asymmetry after longâ€gap esophageal atresia repair. Annals of Clinical and Translational Neurology, 2021, 8, 2132-2145.	1.7	1
5	Infant Corpus Callosum Size After Surgery and Critical Care for Long-Gap Esophageal Atresia: Qualitative and Quantitative MRI. Scientific Reports, 2020, 10, 6408.	1.6	11
6	Neonatal functional brain maturation in the context of perioperative critical care and pain management: A case report. Heliyon, 2019, 5, e02350.	1.4	9
7	Infant Brain Structural MRI Analysis in the Context of Thoracic Non-cardiac Surgery and Critical Care. Frontiers in Pediatrics, 2019, 7, 315.	0.9	17
8	Quantitative MRI study of infant regional brain size following surgery for longâ€gap esophageal atresia requiring prolonged critical care. International Journal of Developmental Neuroscience, 2019, 79, 11-20.	0.7	11
9	Evaluation of Postnatal Sedation in Full-Term Infants. Brain Sciences, 2019, 9, 114.	1.1	14
10	Neurologic Injury and Brain Growth in the Setting of Long-Gap Esophageal Atresia Perioperative Critical Care: A Pilot Study. Brain Sciences, 2019, 9, 383.	1.1	14
11	Preoperative Evaluation of the Pediatric Patient. Anesthesiology Clinics, 2018, 36, 689-700.	0.6	10
12	Astrocytic hypertrophy in the rat ventral tegmental area following chronic morphine differs with age. , 2018, 3, 14-21.		7
13	Identifying Rodent Resting-State Brain Networks with Independent Component Analysis. Frontiers in Neuroscience, 2017, 11, 685.	1.4	39
14	Resting-State Functional Connectivity in the Infant Brain: Methods, Pitfalls, and Potentiality. Frontiers in Pediatrics, 2017, 5, 159.	0.9	31
15	Probing Intrinsic Resting-State Networks in the Infant Rat Brain. Frontiers in Behavioral Neuroscience, 2016, 10, 192.	1.0	24
16	Combining Anterograde Tracing and Immunohistochemistry to Define Neuronal Synaptic Circuits. Neuromethods, 2016, , 63-80.	0.2	0
17	Long-term behavioral effects in a rat model of prolonged postnatal morphine exposure Behavioral Neuroscience, 2015, 129, 643-655.	0.6	19
18	Endogenous Cholinergic Neurotransmission Contributes to Behavioral Sensitization to Morphine. PLoS ONE, 2015, 10, e0117601.	1.1	20

DUSICA BAJIC

#	Article	IF	CITATIONS
19	Morphineâ€enhanced apoptosis in selective brain regions of neonatal rats. International Journal of Developmental Neuroscience, 2013, 31, 258-266.	0.7	94
20	Projections from the rat cuneiform nucleus to the A7, A6 (locus coeruleus), and A5 pontine noradrenergic cell groups. Journal of Chemical Neuroanatomy, 2013, 50-51, 11-20.	1.0	8
21	Ultrastructural analysis of rat ventrolateral periaqueductal gray projections to the A5 cell group. Neuroscience, 2012, 224, 145-159.	1.1	9
22	Periaqueductal gray neuroplasticity following chronic morphine varies with age: Role of oxidative stress. Neuroscience, 2012, 226, 165-177.	1.1	24
23	Ketamine Activates Cell Cycle Signaling and Apoptosis in the Neonatal Rat Brain. Anesthesiology, 2010, 112, 1155-1163.	1.3	107
24	Visualizing acute pain–morphine interaction in descending monoamine nuclei with Fos. Brain Research, 2010, 1306, 29-38.	1.1	8
25	Acute noxious stimulation modifies morphine effect in serotonergic but not dopaminergic midbrain areas. Neuroscience, 2010, 166, 720-729.	1.1	7
26	Prolonged Exposure to Ketamine Increases Brain Derived Neurotrophic Factor Levels in Developing Rat Brains. Current Drug Safety, 2009, 4, 11-16.	0.3	32
27	Dissociated histaminergic neuron cultures from the tuberomammillary nucleus of rats: culture methods and ghrelin effects. Journal of Neuroscience Methods, 2004, 132, 177-184.	1.3	23
28	Effects of Orexin (Hypocretin) on GIRK Channels. Journal of Neurophysiology, 2003, 90, 693-702.	0.9	83
29	Two different inward rectifier K+ channels are effectors for transmitter-induced slow excitation in brain neurons. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14494-14499.	3.3	22
30	Ultrastructural analysis of ventrolateral periaqueductal gray projections to the A7 catecholamine cell group. Neuroscience, 2001, 104, 181-197.	1.1	37
31	Topographic architecture of stress-related pathways targeting the noradrenergic locus coeruleus. Physiology and Behavior, 2001, 73, 273-283.	1.0	171
32	Periaqueductal gray neurons monosynaptically innervate extranuclear noradrenergic dendrites in the rat pericoerulear region. Journal of Comparative Neurology, 2000, 427, 649-662.	0.9	30
33	Projections of neurons in the periaqueductal gray to pontine and medullary catecholamine cell groups involved in the modulation of nociception. , 1999, 405, 359-379.		119
34	Projections of neurons in the periaqueductal gray to pontine and medullary catecholamine cell groups involved in the modulation of nociception. Journal of Comparative Neurology, 1999, 405, 359.	0.9	1