Taek Seung Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4283619/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials, 2004, 25, 1289-1297.	11.4	1,049

The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene) Tj ETQq0 0 0 rg $\frac{3}{53}$ /Overlock 10 Tf 50 solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene) Tj ETQq0 0 0 rg $\frac{3}{53}$ /Overlock 10 Tf 50 solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene) Tj ETQq0 0 0 rg $\frac{3}{53}$ /Overlock 10 Tf 50 solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene) Tj ETQq0 0 0 rg $\frac{3}{53}$ /Overlock 10 Tf 50 solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene) Tj ETQq0 0 0 rg $\frac{3}{53}$ /Overlock 10 Tf 50 solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene) Tj ETQq0 0 0 rg $\frac{3}{53}$ /Overlock 10 Tf 50 solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene) Tj ETQq0 0 0 rg $\frac{3}{53}$ /Overlock 10 Tf 50 solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene) Tj ETQq0 0 rg $\frac{3}{53}$ /Overlock 10 Tf 50 solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene) Tj ETQq0 0 rg $\frac{3}{53}$ /Overlock 10 Tf 50 solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene) Tj ETQq0 0 rg

3	Gradient force: The mechanism for surface relief grating formation in azobenzene functionalized polymers. Applied Physics Letters, 1998, 72, 2096-2098.	3.3	464
4	Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer, 2004, 45, 7137-7142.	3.8	418
5	Preparation of Antimicrobial Ultrafine Cellulose Acetate Fibers with Silver Nanoparticles. Macromolecular Rapid Communications, 2004, 25, 1632-1637.	3.9	366
6	In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide-co-glycolide). Journal of Applied Polymer Science, 2005, 95, 193-200.	2.6	240
7	Silk Fibroin Nanofiber. Electrospinning, Properties, and Structure. Polymer Journal, 2003, 35, 185-190.	2.7	220
8	Electrospinning of ultrafine cellulose acetate fibers: Studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 5-11.	2.1	217
9	New Fluorescent Metal-Ion Detection Using a Paper-Based Sensor Strip Containing Tethered Rhodamine Carbon Nanodots. ACS Applied Materials & Interfaces, 2015, 7, 15649-15657.	8.0	148
10	Collagen-Based Biomimetic Nanofibrous Scaffolds: Preparation and Characterization of Collagen/Silk Fibroin Bicomponent Nanofibrous Structures. Biomacromolecules, 2008, 9, 1106-1116.	5.4	147
11	Gelation-induced fluorescence enhancement of benzoxazole-based organogel and its naked-eye fluoride detection. Chemical Communications, 2008, , 2364.	4.1	139
12	Synthesis of chitooligosaccharide derivative with quaternary ammonium group and its antimicrobial activity against Streptococcus mutans. International Journal of Biological Macromolecules, 2003, 32, 23-27.	7.5	119
13	Superhydrophobicity of PHBV fibrous surface with bead-on-string structure. Journal of Colloid and Interface Science, 2008, 320, 91-95.	9.4	105
14	Ultrafine porous fibers electrospun from cellulose triacetate. Materials Letters, 2005, 59, 2998-3001.	2.6	92
15	Superhydrophobicity of cellulose triacetate fibrous mats produced by electrospinning and plasma treatment. Carbohydrate Polymers, 2009, 75, 246-250.	10.2	92
16	Chemically bound Prussian blue in sodium alginate hydrogel for enhanced removal of Cs ions. Journal of Hazardous Materials, 2018, 360, 243-249.	12.4	75
17	Conjugated Polymer Dots-on-Electrospun Fibers as a Fluorescent Nanofibrous Sensor for Nerve Gas Stimulant. ACS Applied Materials & Interfaces, 2014, 6, 22884-22893.	8.0	58
18	Highly Emissive Selfâ€assembled Organic Nanoparticles having Dual Color Capacity for Targeted Immunofluorescence Labeling. Advanced Materials, 2008, 20, 1117-1121.	21.0	57

#	Article	IF	CITATIONS
19	Highly Selective Cysteine Detection and Bioimaging in Zebrafish through Emission Color Change of Water-Soluble Conjugated Polymer-Based Assay Complex. ACS Applied Materials & Interfaces, 2012, 4, 1429-1433.	8.0	56
20	A New Synthetic Approach for Polybenzoxazole and Light-Induced Fluorescent Patterning on Its Film. Macromolecules, 2005, 38, 9427-9433.	4.8	53
21	Photoinduced surface relief gratings in high-Tg main-chain azoaromatic polymer films. Journal of Polymer Science Part A, 1998, 36, 283-289.	2.3	51
22	Synthesis and optical properties of polyureas with azoaromatic groups in the main chain. Macromolecular Chemistry and Physics, 1997, 198, 2279-2289.	2.2	49
23	Aromatic oxadiazole-based conjugated polymers with excited-state intramolecular proton transfer: Their synthesis and sensing ability for explosive nitroaromatic compounds. Journal of Polymer Science Part A, 2006, 44, 2059-2068.	2.3	48
24	Synthesis of reversible fluorescent organogel containing 2-(2′-hydroxyphenyl)benzoxazole: fluorescence enhancement upon gelation and detecting property for nerve gas simulant. Tetrahedron, 2010, 66, 1667-1672.	1.9	48
25	Conjugated Poly(fluorene-quinoxaline) for Fluorescence Imaging and Chemical Detection of Nerve Agents with Its Paper-Based Strip. ACS Applied Materials & Interfaces, 2014, 6, 1330-1336.	8.0	46
26	Fluorescent, stimuli-responsive, crosslinked PNIPAM-based microgel. Sensors and Actuators B: Chemical, 2015, 207, 623-630.	7.8	37
27	A new series of 2,5-bis(4-methylphenyl)-1,3,4-oxadiazole derivatives: their synthesis and fluorescence properties for anion sensors. Tetrahedron Letters, 2007, 48, 7788-7792.	1.4	35
28	Simultaneous Detection and Removal of Mercury Ions in Aqueous Solution with Fluorescent Conjugated Polymerâ€Based Sensor Ensemble. Macromolecular Rapid Communications, 2011, 32, 1061-1065.	3.9	34
29	Effect of Side Chains on the Thermal Degradation of Poly(3-hydroxyalkanoates). Macromolecular Chemistry and Physics, 2001, 202, 1257-1261.	2.2	33
30	Self-assembled monolayer of the aromatic thioacetate on the gold surface. Materials Science and Engineering C, 2004, 24, 43-46.	7.3	32
31	Simple Technique for Spatially Separated Nanofibers/Nanobeads by Multinozzle Electrospinning toward White-Light Emission. ACS Applied Materials & Interfaces, 2013, 5, 6038-6044.	8.0	31
32	Photoswitchable Emission Color Change in Nanodots Containing Conjugated Polymer and Photochrome. ACS Applied Materials & amp; Interfaces, 2016, 8, 34770-34776.	8.0	31
33	Synthesis of conjugated polymer nanoparticles with core-shell structure for cell imaging and photodynamic cancer therapy. Macromolecular Research, 2017, 25, 572-577.	2.4	30
34	Removal of sodium dodecylbenzenesulfonate using surface-functionalized mesoporous silica nanoparticles. Microporous and Mesoporous Materials, 2019, 275, 270-277.	4.4	30
35	Newly synthesized polybenzoxazole derivative with an adjacent hydroxyphenyl ring for optical sensing. Journal of Polymer Science Part A, 2005, 43, 1397-1403.	2.3	27
36	Protein–induced aggregation of fluorescent conjugated polyelectrolytes with sulfonate groups: Synthesis and its sensing application. Journal of Polymer Science Part A, 2011, 49, 138-146.	2.3	27

#	Article	IF	CITATIONS
37	Fluorescence sensing of glucose using glucose oxidase incorporated into a fluorophore-containing PNIPAM hydrogel. Polymer Chemistry, 2016, 7, 1907-1912.	3.9	27
38	Synthesis of chromo- and fluorogenic poly(ortho-diaminophenylene) chemosensors for fluoride anion. Journal of Polymer Science Part A, 2007, 45, 1546-1556.	2.3	26
39	Synthesis of organogelling, fluoride ion-responsive, cholesteryl-based benzoxazole containing intra- and intermolecular hydrogen-bonding sites. Tetrahedron Letters, 2010, 51, 5596-5600.	1.4	26
40	Porous hydrogel containing Prussian blue nanoparticles for effective cesium ion adsorption in aqueous media. Journal of Industrial and Engineering Chemistry, 2018, 60, 465-474.	5.8	26
41	Synthesis of tetraphenylethylene-based conjugated microporous polymers for detection of nitroaromatic explosive compounds. RSC Advances, 2018, 8, 34291-34296.	3.6	26
42	A Singleâ€Benzeneâ€Based Fluorophore: Optical Waveguiding in the Crystal Form. ChemPlusChem, 2019, 84, 1130-1134.	2.8	26
43	Colorimetric detection and removal of radioactive Co ions using sodium alginate-based composite beads. Journal of Hazardous Materials, 2017, 326, 69-76.	12.4	25
44	Aggregation–Deaggregation-Triggered, Tunable Fluorescence of an Assay Ensemble Composed of Anionic Conjugated Polymer and Polypeptides by Enzymatic Catalysis of Trypsin. ACS Applied Materials & Interfaces, 2014, 6, 918-924.	8.0	24
45	Synthesis of water-soluble, fluorescent, conjugated polybenzodiazaborole forÂdetection of cyanide anion in water. Polymer, 2013, 54, 3542-3547.	3.8	23
46	Unusual fluorescence of <i>o</i> -phenylazonaphthol derivatives with aggregation-induced emission and their use in two-photon cell imaging. Chemical Communications, 2019, 55, 6747-6750.	4.1	23
47	Fabrication of YBa2Cu3O7â [~] δsuperconducting nanofibres by electrospinning. Superconductor Science and Technology, 2006, 19, 1264-1268.	3.5	22
48	Cobalt Ionâ€Mediated Cysteine Detection With a Hyperbranched Conjugated Polyelectrolyte as a New Sensing Platform. Macromolecular Rapid Communications, 2012, 33, 1510-1516.	3.9	22
49	Cesium ion-exchange resin using sodium dodecylbenzenesulfonate for binding to Prussian blue. Chemosphere, 2020, 244, 125589.	8.2	22
50	Prussian Blue Decoration on Polyacrylonitrile Nanofibers Using Polydopamine for Effective Cs Ion Removal. Industrial & Engineering Chemistry Research, 2020, 59, 4872-4880.	3.7	22
51	Fluorescence resonance energy transfer between polydiacetylene vesicles and embedded benzoxazole molecules for pH sensing. Reactive and Functional Polymers, 2013, 73, 451-456.	4.1	21
52	Synthesis of a glucose oxidase-conjugated, polyacrylamide-based, fluorescent hydrogel for a reusable, ratiometric glucose sensor. Polymer Chemistry, 2016, 7, 6655-6661.	3.9	21
53	Carbon nanodots functionalized with rhodamine and poly(ethylene glycol) for ratiometric sensing of Al ions in aqueous solution. Sensors and Actuators B: Chemical, 2017, 249, 59-65.	7.8	21
54	Synthesis and electrostatic multilayer assembly of an acridine-containing polymer with properties of an optical sensor. Macromolecular Rapid Communications, 2000, 21, 951-955.	3.9	20

#	Article	IF	CITATIONS
55	Optical switching and anion-induced chromogenic application in conjugated polyazomethine derivatives. Reactive and Functional Polymers, 2008, 68, 1696-1703.	4.1	20
56	Green synthesis and antimicrobial activity of silver chloride nanoparticles stabilized with chitosan oligomer. Journal of Materials Science: Materials in Medicine, 2014, 25, 2629-2638.	3.6	20
57	Synthesis of triphenylamine-containing conjugated polyelectrolyte and fabrication of fluorescence color-changeable, paper-based sensor strips for biothiol detection. Polymer Chemistry, 2015, 6, 714-720.	3.9	20
58	The detection of thrombin using a mixture of a fluorescent conjugated polyelectrolyte and fibrinogen and implementation of a logic gate. Chemical Communications, 2014, 50, 5833-5836.	4.1	19
59	Dual-signal detection of trypsin using controlled aggregation of conjugated polymer dots and magnetic nanoparticles. Sensors and Actuators B: Chemical, 2018, 264, 45-51.	7.8	19
60	Electrically Anisotropic Thin Films Consisting of Polymeric and Metallic Nanolayers from Self-Assembled Lamellae of Diblock Copolymers. Langmuir, 2005, 21, 3625-3628.	3.5	18
61	Electrostatically self-assembled microcapsule composed of conjugated polyelectrolytes and polypeptides for an emission color-changeable assay for trypsin. Sensors and Actuators B: Chemical, 2015, 221, 1229-1235.	7.8	18
62	Decoration of conjugated polyquinoxaline dots on mesoporous TiO2 nanofibers for visible-light-driven photocatalysis. Polymer, 2021, 228, 123892.	3.8	18
63	Synthesis and metal binding behavior of hydroxamic acid resins from poly(ethyl acrylate) crosslinked with divinylbenzene and hydrophilic crosslinking agent. Journal of Polymer Science Part A, 1995, 33, 203-210.	2.3	16
64	Synthesis of polyhydroxybenzoxazole-based colorimetric chemosensor for anionic species. Materials Science and Engineering C, 2004, 24, 261-264.	7.3	16
65	Simultaneous and Dual Emissive Imaging by Microâ€Contact Printing on the Surface of Electrostatically Assembled Waterâ€Soluble Poly(<i>p</i> â€phenylene) Using FRET. Advanced Functional Materials, 2010, 20, 3847-3855.	14.9	16
66	Full-Color Emissive Poly(Ethylene Oxide) Electrospun Nanofibers Containing a Single Hyperbranched Conjugated Polymer for Large-Scale, Flexible Light-Emitting Sheets. Macromolecular Rapid Communications, 2016, 37, 303-310.	3.9	16
67	Cesium ion adsorption and desorption on electrospun mesoporous silica nanofibers immobilized with Prussian blue. Chemosphere, 2022, 290, 133318.	8.2	16
68	Synthesis of polyquinoline ether and its optical sensor property in the presence of metal cations. Journal of Polymer Science Part A, 2002, 40, 1831-1837.	2.3	15
69	Metal-induced optical sensing and optical switching in poly(pyridyl phenylene). Journal of Polymer Science Part A, 2004, 42, 2444-2450.	2.3	15
70	Highly hydrophobic nanofibrous surfaces genearated by poly(vinylidene fluoride). Fibers and Polymers, 2013, 14, 1271-1275.	2.1	15
71	Photoswitchable chromic behavior of conjugated polymer films for reversible patterning and construction of a logic gate. Polymer Chemistry, 2017, 8, 5539-5545.	3.9	15
72	Detection and imaging of cathepsin L in cancer cells using the aggregation of conjugated polymer dots and magnetic nanoparticles. Sensors and Actuators B: Chemical, 2020, 307, 127641.	7.8	15

#	Article	IF	CITATIONS
73	Synthesis of porous poly(hydroxamic acid) from poly(ethyl acrylate-co-divinylbenzene). Polymer Bulletin, 1994, 32, 273-279.	3.3	14
74	A fluorescence turn-on probe for the detection of thiol-containing amino acids in aqueous solution and bioimaging in cells. Tetrahedron, 2014, 70, 2034-2039.	1.9	14
75	Porous Chelating Resins from Poly(Acrylonitrile- <i>co</i> -Ethyl Acrylate- <i>co</i> -Divinylbenzene). Journal of Macromolecular Science - Pure and Applied Chemistry, 1995, 32, 379-392.	2.2	13
76	Photocatalytic activities of cellulose-based nanofibers with different silver phases: Silver ions and nanoparticles. Carbohydrate Polymers, 2014, 102, 956-961.	10.2	13
77	Cobalt and nickel uptake by silica-based extractants. Separation Science and Technology, 2018, 53, 1552-1562.	2.5	13
78	Synthesis of fluorescent conjugated polymer nanoparticles and their immobilization on a substrate for white light emission. Polymer Chemistry, 2018, 9, 5671-5679.	3.9	13
79	Size-dependent fluorescence of conjugated polymer dots and correlation with the fluorescence in solution and in the solid phase of the polymer. Nanoscale, 2020, 12, 2492-2497.	5.6	13
80	Synthesis of conjugated microporous polymer and its embedding in porous nanofibers for visible-light-driven photocatalysis with reusability. Polymer, 2020, 211, 123060.	3.8	13
81	Synthesis of donor-acceptor-type conjugated polymer dots as organic photocatalysts for dye degradation and hydrogen evolution. Polymer, 2021, 229, 124004.	3.8	13
82	Thermally stable maleimide copolymer for second-order nonlinear optics. Journal of Applied Polymer Science, 1996, 59, 9-14.	2.6	12
83	Formation of metal complex in a poly(hydroxamic acid) resin bead. Fibers and Polymers, 2001, 2, 13-17.	2.1	12
84	Remediation of radioiodine using polyamine anion exchange resins. Journal of Industrial and Engineering Chemistry, 2019, 78, 210-221.	5.8	12
85	Chromatic detection of Cs ions using polydiacetylene-based vesicles containing crown-ether-like ethylene glycol units. Sensors and Actuators B: Chemical, 2019, 281, 343-349.	7.8	12
86	Synthesis of poly(<i>N</i> -isopropylacrylamide) polymer crosslinked with an AIE-active azonaphthol for thermoreversible fluorescence. RSC Advances, 2020, 10, 39277-39283.	3.6	12
87	Visible-Light-Driven Asymmetric TiO ₂ -Based Photocatalytic Micromotor Hybridized with a Conjugated Polyelectrolyte and Glucose Oxidase. Langmuir, 2021, 37, 6301-6310.	3.5	12
88	Sulfur-encapsulated zeolite micromotors for the selective removal of cesium from high-salt water with accelerated cleanup times. Chemosphere, 2021, 276, 130190.	8.2	12
89	Synthesis of Congo Red linked with alkyl amide polymer and its optical ion-sensing property. Polymer Bulletin, 1999, 42, 655-660.	3.3	11
90	New conjugated polymers comprising <i>ortho</i> â€phenylazonaphthols: Synthesis and chromogenic behaviors. Journal of Polymer Science Part A, 2007, 45, 4430-4440.	2.3	11

#	Article	IF	CITATIONS
91	Dyeing polypropylene fibres by means of copolymer additives. Coloration Technology, 1994, 110, 19-23.	0.1	11
92	Synthesis of conjugated, hyperbranched copolymers for tunable multicolor emissions in light-emitting diodes. Polymer Chemistry, 2015, 6, 5062-5069.	3.9	11
93	Simultaneous detection and removal of radioisotopes with modified alginate beads containing an azo-based probe using RGB coordinates. Journal of Hazardous Materials, 2015, 300, 227-234.	12.4	11
94	Synthesis of poly(p-phenylene) containing a rhodamine 6G derivative for the detection of Fe(<scp>iii</scp>) in organic and aqueous media. RSC Advances, 2017, 7, 39852-39858.	3.6	11
95	Selective adsorption of sodium dodecylbenzenesulfonate from a Cs ion mixture by electrospun mesoporous silica nanofibers. Chemosphere, 2020, 259, 127391.	8.2	11
96	Manipulation of intramolecular hydrogen bonds in single-benzene derivatives: Esterase sensing, fluorescence patterning, and inkless writing. Sensors and Actuators B: Chemical, 2020, 319, 128307.	7.8	11
97	Synthesis and metal binding properties of poly(hydroxamic acid) resins from poly(ethyl) Tj ETQq1 1 0.784314 rg	gBT/Overlo 2.6	ock 10 Tf 50
98	Optical properties of segmented cyano-containing PPV-based chromophore for fluorescent sensing. Optical Materials, 2003, 21, 429-432.	3.6	10
99	Formulation of Thermally Cured Organic-Inorganic Superhydrophilic Coating for Antifogging Optical Application. Molecular Crystals and Liquid Crystals, 2007, 463, 117/[399]-129/[411].	0.9	10
100	Detection of Ethylenediamine Using a Fluorescent Probe in Solution and in a PMMA Matrix. Molecular Crystals and Liquid Crystals, 2014, 600, 179-188.	0.9	10
101	Emission Tuning with Sizeâ€Controllable Polymer Dots from a Single Conjugated Polymer. Small, 2018, 14, 1702758.	10.0	10
102	Adsorption of Ethylenediaminetetraacetic Acid on a Gel-Type Ion-Exchange Resin for Purification of Liquid Waste Containing Cs Ions. Polymers, 2019, 11, 297.	4.5	10
103	Electro-optical properties of thermally stable self-crosslinkable copolymer with glycidyl methacrylate units. European Polymer Journal, 1999, 35, 1197-1201.	5.4	9
104	Conjugated vinyl derivatives of chitooligosaccharide: Synthesis and characterization. Journal of Polymer Science Part A, 2001, 39, 880-887.	2.3	9
105	Fluorescence turn-on detection of cyanide anion based on viologen-quenched water-soluble hyperbranched polymer. Polymer, 2013, 54, 1323-1328.	3.8	9
106	Fabrication of a nanohybrid of conjugated polymer nanoparticles and graphene oxide for biosensing of trypsin. Journal of Polymer Science Part A, 2014, 52, 1898-1904.	2.3	9
107	Fabrication, biofunctionalization, and simultaneous multicolor emission of hybrid "dots-on-spheres― structures for specific targeted imaging of cancer cells. RSC Advances, 2014, 4, 41378-41386.	3.6	9
108	Design principles of chemiluminescence (CL) chemodosimeter for self-signaling detection: luminol protective approach. RSC Advances, 2014, 4, 46488-46493.	3.6	9

#	Article	IF	CITATIONS
109	Synthesis of Prussian blue-embedded porous polymer for detection and removal of Cs ions. Polymer, 2018, 158, 320-326.	3.8	9
110	Bis(2-hydroxyphenyl)-1,3,4-oxadiazole Derivative for Anion Sensing and Fluorescent Patterning. Molecular Crystals and Liquid Crystals, 2007, 463, 255/[537]-261/[543].	0.9	8
111	Colorimetric detection of transition metal ions with azopyridine-based probing molecule in aqueous solution and in PMMA film. Fibers and Polymers, 2013, 14, 1993-1998.	2.1	8
112	Thermoresponsive, and reversibly emissive, core–shell nanogel composed of PNIPAM and carbon nanodots. Polymer Bulletin, 2016, 73, 2615-2625.	3.3	8
113	Conjugated polymer-hybridized silica nanoparticle as a fluorescent sensor for cysteine. Polymer Bulletin, 2016, 73, 2447-2456.	3.3	8
114	Removal of Sodium Dodecylbenzenesulfonate by Macroporous Adsorbent Resins. Materials, 2018, 11, 1324.	2.9	8
115	Oxidative stabilization mechanism of poly(vinyl chloride) pitch. Polymer Degradation and Stability, 2000, 68, 247-252.	5.8	7
116	Synthesis and optical properties of an azoaromatic, chromophore-functionalized, oligomeric polyelectrolyte. Journal of Polymer Science Part A, 2003, 41, 1196-1201.	2.3	7
117	Oligonucleotideâ€mediated aggregation of a cationic conjugated polymer for fluorescent detection of mercury ions in an aqueous medium. Journal of Polymer Science Part A, 2013, 51, 2393-2400.	2.3	7
118	Titania nanoparticle-loaded mesoporous silica synthesized through layer-by-layer assembly for the photodegradation of sodium dodecylbenzenesulfonate. Applied Surface Science, 2019, 490, 38-46.	6.1	7
119	Synthesis of Polymeric Fluorescent Chemosensor for the Recognition of Fe ³⁺ Ion. Molecular Crystals and Liquid Crystals, 2000, 349, 283-286.	0.3	6
120	Metal cation-induced optical characterization of oligomeric polycyanostyryl derivative. Reactive and Functional Polymers, 2004, 59, 225-233.	4.1	6
121	Synthesis of bipyridine polymer linked with cyanostyryl groups for colorimetric and fluorescent anion sensing. Thin Solid Films, 2005, 477, 100-103.	1.8	6
122	A Glucose-Selective Fluorescent Water-Soluble Hyperbranched Polymer Sensor With Boronic Acid End Groups. Molecular Crystals and Liquid Crystals, 2010, 519, 54-61.	0.9	6
123	Molecular Design Approach for Directed Alignment of Conjugated Polymers. Macromolecules, 2019, 52, 6485-6494.	4.8	6
124	Synthesis of conjugated microporous polymer-based fluorescent "turn-off―sensor for selective detection of picric acid. Molecular Crystals and Liquid Crystals, 2019, 686, 1-8.	0.9	6
125	Fluorescence Modulation of Conjugated Polymer Nanoparticles Embedded in Poly(N-Isopropylacrylamide) Hydrogel. Polymers, 2021, 13, 4315.	4.5	6
126	Synthesis of a polyoxadiazole containing the 4-hydroxypyridine group and photo-induced fluorescent imaging on the polymer film. Reactive and Functional Polymers, 2010, 70, 223-229.	4.1	5

#	Article	IF	CITATIONS
127	Synthesis of Conjugated Polymer Containing Bipyridine and Oxadiazole Groups and Its Metal Ion Sensing Property. Molecular Crystals and Liquid Crystals, 2010, 519, 43-53.	0.9	5
128	Preparation of Conjugated Polymer Dots as a Fluorescence Turn-On Assay for Bovine Serum Albumin by Interaction with Graphene Oxide. Molecular Crystals and Liquid Crystals, 2014, 600, 170-178.	0.9	5
129	Synthesis of gelation-induced emissive, o-phenylazonaphthol-based organogel and its responsiveness to fluoride anion. Tetrahedron, 2021, 81, 131895.	1.9	5
130	Fluorescent Nanohybrid of Conjugated Polymer Dots on Mesoporous Silica Particles for Protease Sensing via Förster Resonance Energy Transfer. Science of Advanced Materials, 2014, 6, 2505-2510.	0.7	5
131	Moving photocatalyst of a titanium dioxide-based micromotor asymmetrically decorated with conjugated polymer dots. Materials and Design, 2022, 219, 110743.	7.0	5
132	Diffraction Color Developed by Self-Assembly of Silica Particle Arrays. Molecular Crystals and Liquid Crystals, 2007, 464, 153/[735]-159/[741].	0.9	4
133	Synthesis of Maleimide-Functionalized Water-Soluble Poly(arylene ethynylene)s. Molecular Crystals and Liquid Crystals, 2008, 492, 192/[556]-199/[563].	0.9	4
134	Fluorometric Detection of Lectin with Water-Soluble Hyperbranched Conjugated Polymer Using Mannose Mediation. Journal of Nanoscience and Nanotechnology, 2012, 12, 4365-4369.	0.9	4
135	Fluorescent Conjugated Polymer Containing Rhodamine Derivative for Förster Resonance Energy Transfer-Based Detection of Al3+ Ion. Journal of Nanoscience and Nanotechnology, 2016, 16, 8805-8808.	0.9	4
136	Degradation Behavior of Nylon 4 in the Presence of Newly Synthesized Thermal Stabilizers. Porrime, 2014, 38, 314-319.	0.2	4
137	Self-Crosslinkable Side-Chain Nonlinear Optical Copolymer. Molecular Crystals and Liquid Crystals, 1995, 267, 59-64.	0.3	3
138	lonochromic 4,4′-azobispyridinium salt-incorporated polymer: synthesis and optical properties. Optical Materials, 2003, 21, 285-288.	3.6	3
139	Colorimetric Anion Sensing and Color Imaging Based on Catalyzed Deprotection in a New Azonaphthol Chromophore. Journal of Nanoscience and Nanotechnology, 2006, 6, 3551-3554.	0.9	3
140	Aldehyde-Functionalized, Water-Soluble Poly(para-phenylene): Synthesis and Streptavidin Assay Using FRET. Journal of Nanoscience and Nanotechnology, 2010, 10, 6920-6924.	0.9	3
141	Prussian blue-decorated Cs ion exchange resins with polydopamine as a linker. Molecular Crystals and Liquid Crystals, 2019, 686, 9-17.	0.9	3
142	Optical sensing of metal ions by using polyamide containing azo moieties. Synthetic Metals, 2001, 117, 135-136.	3.9	2
143	Surface Functionalization of Silica Particles with Phthalocyanine. Molecular Crystals and Liquid Crystals, 2006, 444, 23-31.	0.9	2
144	Newly Synthesized Branch-type Aromatic Oxadiazole Polymer and Binary Fluorescence Patterning on its Film. High Performance Polymers, 2007, 19, 531-540.	1.8	2

#	Article	IF	CITATIONS
145	Synthesis and Electrostatic Nano-Assembly of Water-Soluble Polybenzothiadiazole Derivatives with Long-Wavelength Emission in the Solid States. Journal of Nanoscience and Nanotechnology, 2010, 10, 6977-6980.	0.9	2
146	Self-Assembly of Supramolecualr Metallogelator Containing 2-(2′-Hydroxyphenyl) benzoxazole/Zn(II) Chelate. Journal of Nanoscience and Nanotechnology, 2010, 10, 6929-6933.	0.9	2
147	Functionalized, Fluorescent, Conjugated Polymer Nanospheres for Protein Targeting via Förster Resonance Energy Transfer. Journal of Nanoscience and Nanotechnology, 2015, 15, 1756-1759.	0.9	2
148	Fabrication of hollow-centered sodium-alginate-based hydrogels embedded with various particles. Molecular Crystals and Liquid Crystals, 2017, 659, 71-76.	0.9	2
149	Switchable control of hydrophilicity and hydrophobicity in conjugated polymer nanoparticles by carbon dioxide. Molecular Crystals and Liquid Crystals, 2019, 685, 78-86.	0.9	2
150	A Facile and Versatile Synthesis of Highly Luminescent Carbon Dots-on-Glass. Science of Advanced Materials, 2014, 6, 2440-2444.	0.7	2
151	Synthesis of <scp>Melamineâ€Formaldehyde</scp> Microcapsules Containing Polyfluorene for Fluorescent Detection of Picric Acid in Aqueous Medium. Bulletin of the Korean Chemical Society, 2021, 42, 124-129.	1.9	2
152	Fabrication of a porous polyacrylonitrile nanofiber adsorbent for removing radioactive 60Co. Chemosphere, 2022, 302, 134910.	8.2	2
153	SYNTHESIS AND CHARACTERIZATION OF LUMINESCENT POLYHYDROXYPYRIDINE LINKED WITH AROMATIC OXADIAZOLE. Journal of Nonlinear Optical Physics and Materials, 2004, 13, 613-619.	1.8	1
154	Macromol. Rapid Commun. 18/2012. Macromolecular Rapid Communications, 2012, 33, 1592-1592.	3.9	1
155	An Emission Color-Changeable Sensor for Biothiol Using a Water-Soluble Conjugated Polymer in a Paper-Based Strip. Journal of Nanoscience and Nanotechnology, 2016, 16, 8728-8732.	0.9	1
156	Preparation of liquid marbles using an azobenzene-based metal-organic framework particles. Molecular Crystals and Liquid Crystals, 2018, 660, 90-97.	0.9	1
157	Electrospun mesoporous silica nanofibers decorated with titanium dioxide nanoparticles for a repeatable photocatalysis. Molecular Crystals and Liquid Crystals, 2021, 730, 85-100.	0.9	1
158	Water-soluble Conjugated Poly(p-phenylene ethynylene)s : Synthesis and Cell Imaging. Porrime, 2015, 39, 940.	0.2	1
159	Fluorescence Patterning on the Polymer Films Containing a Benzoxazole Compound. Porrime, 2017, 41, 641-647.	0.2	1
160	Colorimetric detection of Co ions by a poly(vinyl alcohol)-based hydrogel using color coordinate. Dyes and Pigments, 2022, 197, 109894.	3.7	1
161	Synthesis of a conjugated polymer film via interfacial Knoevenagel polymerization and conversion to covalent triazine polymer for photocatalysis. Polymer, 2021, 237, 124384.	3.8	1
162	Photo-induced Holographic Surface Relief Gratings in High Tg Main-chain Azoaromatic Polymer Films. Molecular Crystals and Liquid Crystals, 1998, 316, 95-98.	0.3	0

#	Article	IF	CITATIONS
163	SYNTHESIS OF CONJUGATED POLYOXADIAZOLE WITH BIPYRIDINE MOIETY FOR OPTICAL SENSING. Molecular Crystals and Liquid Crystals, 2003, 406, 143-150.	0.9	0
164	Sensor Application of Submicro-Sized Silica Particle Functionalized with Hydroxyphenylbenzoxazole. Molecular Crystals and Liquid Crystals, 2006, 445, 185/[475]-192/[482].	0.9	0
165	Simultaneous and Dual Emissive Imaging by Micro-Contact Printing on the Surface of Electrostatically Assembled Water-Soluble Poly(p-phenylene) Using FRET. Advanced Functional Materials, 2010, 20, 3846-3846.	14.9	0
166	Macromol. Rapid Commun. 14/2011. Macromolecular Rapid Communications, 2011, 32, .	3.9	0
167	Macromol. Rapid Commun. 4/2016. Macromolecular Rapid Communications, 2016, 37, 372-372.	3.9	0
168	Turn-On Detection of Cs Ions Based on Conjugated Polymer-Graphene Oxide Composite. Porrime, 2019, 43, 302-308.	0.2	0