List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4283551/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization and Manipulation of Carbon Precursor Species during Plasma Enhanced Chemical Vapor Deposition of Graphene. Nanomaterials, 2020, 10, 2235.	1.9	3
2	Simulation to fabrication—understanding the effect of NiAuCu alloy catalysts for controlled growth of graphene at reduced temperature. Materials Research Express, 2020, 7, 015603.	0.8	3
3	Low-temperature chemical vapor deposition growth of graphene films enabled by ultrathin alloy catalysts. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, 032202.	0.6	5
4	Non-Aqueous Synthesis of Graphene Supported Spinel Ferrite Nanoparticles. Microscopy and Microanalysis, 2019, 25, 2252-2253.	0.2	0
5	Electron Microscopy and Spectroscopy Characterization of the Effects of Annealing on the Cu/Graphene/Si Multilayer Thin Films. Microscopy and Microanalysis, 2019, 25, 1918-1919.	0.2	0
6	Unique Structural Characteristics of Catalytic Palladium/Gold Nanoparticles on Graphene. Microscopy and Microanalysis, 2019, 25, 80-91.	0.2	3
7	Plasma-Enhanced Chemical Vapor Deposition of Acetylene on Codeposited Bimetal Catalysts Increasing Graphene Sheet Continuity Under Low-Temperature Growth Conditions. Nanoscale Research Letters, 2019, 14, 335.	3.1	7
8	A Comparative Study of Carbon Supports for Pd/Au Nanoparticle-Based Catalysts. Materials Performance and Characterization, 2019, 8, 20180147.	0.2	0
9	High-Performance Self-Powered UV Detector Based on SnO2-TiO2 Nanomace Arrays. Nanoscale Research Letters, 2018, 13, 92.	3.1	42
10	Graphene Layer Control Enabled by Nickel-Copper Alloy Thin Film Catalyst. Microscopy and Microanalysis, 2018, 24, 1624-1625.	0.2	2
11	Electron Microscopy Characterization of the Synergistic Effects between Pd, Au NPs, and Their Graphene Support. Microscopy and Microanalysis, 2018, 24, 1888-1889.	0.2	1
12	Increased Sample Yield and Achievable Imaging Resolutions Through Thin Film Transfer Technique. Microscopy and Microanalysis, 2018, 24, 1630-1631.	0.2	0
13	Low Temperature Surface-Mediated Growth of Graphene On Ultra-Thin Metal Catalysts. Microscopy and Microanalysis, 2018, 24, 1620-1621.	0.2	1
14	Palladium and gold nanoparticles on carbon supports as highly efficient catalysts for effective removal of trichloroethylene. Journal of Materials Research, 2018, 33, 2404-2413.	1.2	7
15	Effect of Synthesis Time of Carbon Supported Pd/Au NPs on TCE degradation. Microscopy and Microanalysis, 2018, 24, 1802-1803.	0.2	Ο
16	Reversible control of the magnetization of Fe ₃ O ₄ via lithium ions. RSC Advances, 2017, 7, 2644-2649.	1.7	13
17	Reversible control of magnetization of Fe3O4 by a solid-state film lithium battery. Applied Physics Letters, 2017, 110, .	1.5	22
18	lmpact of interfacial effects on ferroelectric resistance switching of Au/BiFeO ₃ /Nb:SrTiO ₃ (100) Schottky junctions. RSC Advances, 2017, 7, 22715-22721.	1.7	24

#	Article	IF	CITATIONS
19	Annealing Effects on TiO2 Photocatalytic Degradation of Methylene Blue. Microscopy and Microanalysis, 2017, 23, 2094-2095.	0.2	0
20	Reversible control of the magnetization of spinel ferrites based electrodes by lithium-ion migration. Scientific Reports, 2017, 7, 12554.	1.6	23
21	Effect of Tip Morphology of Vertically Aligned Alumina Nanowire Arrays on Ovalbumin Uptake of Dendritic Cells. Microscopy and Microanalysis, 2017, 23, 1292-1293.	0.2	0
22	Adaptive Biharmonic In-Painting for Sparse Acquisition Using Variance Frames. Microscopy and Microanalysis, 2017, 23, 148-149.	0.2	2
23	Effect of Synthesis Temperature on the Formation of GAC supported Pd and Au NPs. Microscopy and Microanalysis, 2017, 23, 1916-1917.	0.2	2
24	Suspended and Bilayer Graphene Growth at Cu Grain Boundaries on Thin Film Cu. Microscopy and Microanalysis, 2016, 22, 1666-1667.	0.2	0
25	Self-assembled epitaxial BaFe12O19 nano-island film grown on Al2O3 substrate by pulsed laser deposition. Materials Letters, 2016, 181, 212-215.	1.3	9
26	C-Plane Sapphire and Catalyst Confinement Enable Wafer-Scale High-Quality Graphene Growth. Journal of Physical Chemistry C, 2016, 120, 26498-26507.	1.5	7
27	High-Performance Self-powered Photodetectors Based on ZnO/ZnS Core-Shell Nanorod Arrays. Nanoscale Research Letters, 2016, 11, 420.	3.1	58
28	Characterization of Palladium and Gold Nanoparticles on Granular Activated Carbon as an Efficient Catalyst for Hydrodechlorination of Trichloroethylene. Microscopy and Microanalysis, 2016, 22, 332-333.	0.2	4
29	Epitaxial rutile TiO2 film based on MgF2 substrate for ultraviolet detector. Journal of Alloys and Compounds, 2016, 683, 439-443.	2.8	17
30	Towards the Electron Spectroscopy Graphene Fingerprint. Microscopy and Microanalysis, 2015, 21, 1149-1150.	0.2	2
31	Isolating the Photocatalytic Degradation of Methylene Blue Dye on TiO2 Surface. Microscopy and Microanalysis, 2015, 21, 281-282.	0.2	1
32	Demonstration of 40kV TEM Diffraction of Graphite for Structural Analysis. Microscopy and Microanalysis, 2015, 21, 353-354.	0.2	0
33	Raman spectroscopy and band structure of Pd-hybridized multilayer graphene. Carbon, 2014, 68, 687-694.	5.4	4
34	Flexible quantum dot-sensitized solar cells with improved efficiencies based on woven titanium wires. Journal of Materials Chemistry A, 2014, 2, 15546.	5.2	21
35	Amorphous alumina nanowire array efficiently delivers Ac-DEVD-CHO to inhibit apoptosis of dendritic cells. Chemical Communications, 2014, 50, 1234-1237.	2.2	8
36	Near-Infrared Selective and Angle-Independent Backscattering from Magnetite Nanoparticle-Decorated Diatom Frustules. ACS Photonics, 2014, 1, 477-482.	3.2	9

#	Article	IF	CITATIONS
37	Low-Temperature Nitrogen Doping in Ammonia Solution for Production of N-Doped TiO ₂ -Hybridized Graphene as a Highly Efficient Photocatalyst for Water Treatment. ACS Sustainable Chemistry and Engineering, 2014, 2, 1802-1810.	3.2	103
38	Asymmetric Decoration of Crystalline Graphene with Pt&TiO2 Nanocrystals as High-Efficient Photocatalyst. Microscopy and Microanalysis, 2014, 20, 1778-1779.	0.2	0
39	Varying Phases of Alumina Nanowires Templated by Vertically Aligned Carbon Nanotubes Grown via Atomic Layer Deposition. Microscopy and Microanalysis, 2014, 20, 1972-1973.	0.2	1
40	Hybridization of conductive few-layer graphene with well-dispersed Pd nanocrystals. Applied Surface Science, 2013, 275, 342-346.	3.1	10
41	Self-powered solid-state photodetector based on TiO2 nanorod/spiro-MeOTAD heterojunction. Applied Physics Letters, 2013, 103, .	1.5	33
42	Exfoliated graphene-supported Pt and Pt-based alloys as electrocatalysts for direct methanol fuel cells. Carbon, 2013, 52, 595-604.	5.4	117
43	Aqueous red-emitting silicon nanoparticles for cellular imaging: Consequences of protecting against surface passivation by hydroxide and water for stable red emission. Journal of Materials Research, 2013, 28, 216-230.	1.2	17
44	Annealing Effect on Photovoltaic Performance of CdSe Quantum-Dots-Sensitized TiO2Nanorod Solar Cells. Journal of Nanomaterials, 2012, 2012, 1-6.	1.5	10
45	Monodispersed Pt and Pt-Co Nanocrystals Assembled on High-Quality Graphene. Microscopy and Microanalysis, 2012, 18, 1570-1571.	0.2	0
46	Evaluation of Monodisperse Amorphous SiO2/TiO2 Core-Shell Nanoparticles. Microscopy and Microanalysis, 2012, 18, 1638-1639.	0.2	0
47	Surfactant-free hybridization of transition metal oxidenanoparticles with conductive graphene for high-performance supercapacitor. Green Chemistry, 2012, 14, 371-377.	4.6	81
48	Thermal annealing activates amplified photoluminescence of germanium metabolically doped in diatom biosilica. Journal of Materials Chemistry, 2011, 21, 10658.	6.7	19
49	Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nature Nanotechnology, 2011, 6, 645-650.	15.6	308
50	Novel form of photonic crystals for bioimaging contrast enhancement. , 2011, , .		0
51	The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices. Energy and Environmental Science, 2011, 4, 3930.	15.6	176
52	Comparative Investigation of the Effect of Oxygen Adsorbate and Electrode Work Function on Carbon-Nanotube Field-Effect Transistors. IEEE Electron Device Letters, 2010, 31, 156-158.	2.2	3
53	Overcoming obstacles for developing carbon nanotube-based devices. , 2010, , .		0
54	Electron Microscopy Characterization of Low-Temperature Growth Zn-doped TiO2 Nanowires. Materials Research Society Symposia Proceedings, 2009, 1178, 80.	0.1	0

#	Article	IF	CITATIONS
55	Electron Microscopy and Optical Characterization of Cadmium Sulphide Nanocrystals Deposited on the Patterned Surface of Diatom Biosilica. Journal of Nanomaterials, 2009, 2009, 1-7.	1.5	30
56	Peptide-Mediated Deposition of Nanostructured TiO2 into the Periodic Structure of Diatom Biosilica and its Integration into the Fabrication of a Dye-Sensitized Solar Cell Device. Materials Research Society Symposia Proceedings, 2009, 1189, 1.	0.1	1
57	Impact of oxygen adsorption on a population of mass produced carbon nanotube field effect transistors. Carbon, 2009, 47, 1493-1500.	5.4	16
58	Fabrication of TiO2 Nanobelt Network for Dye-Sensitized Solar Cells. Materials Research Society Symposia Proceedings, 2009, 1167, 11.	0.1	0
59	Fabrication of Nanomodified Anodes for Power Density Enhancement of Microbial Fuel Cells. Materials Research Society Symposia Proceedings, 2009, 1170, 47.	0.1	1
60	Nanostructured Sheets of TiO Nanobelts for Gas Sensing and Antibacterial Applications. Advanced Functional Materials, 2008, 18, 1131-1137.	7.8	245
61	Biogenic silica based Zn2SiO4:Mn2+ and Y2SiO5:Eu3+ phosphor layers patterned by inkjet printing process. Journal of Materials Chemistry, 2008, 18, 3633.	6.7	16
62	Bismuth Triiodide Sheet-Assisted Growth and Enhanced Field Emission Properties of Cadmium Sulfide Nanowire Array Attached to a Flexible CdS Film. Journal of Physical Chemistry C, 2008, 112, 15140-15143.	1.5	21
63	Peptide-mediated deposition of nanostructured TiO ₂ into the periodic structure of diatom biosilica. Journal of Materials Research, 2008, 23, 3255-3262.	1.2	36
64	High-Yield Two-Dimensional CdS Nanowire Networks Synthesized by a Low-Temperature Chemical Method. Chemistry of Materials, 2008, 20, 3770-3777.	3.2	11
65	Direct Growth of Single Walled Carbon Nanotubes for the Characterization of Structural and Electronic Properties. Materials Research Society Symposia Proceedings, 2008, 1081, 1.	0.1	0
66	Controlled Fabrication of High-Yield CdS Nanostructures by Compartment Arrangement. Journal of Nanomaterials, 2008, 2008, 1-4.	1.5	0
67	Electrical Behavior of Ferromagnetic BiMn-Codoped ZnO Bicrystal Nanobelts to Pt Contacts. Journal of Physical Chemistry C, 2007, 111, 12490-12494.	1.5	11
68	Effects of local Joule heating on the reduction of contact resistance between carbon nanotubes and metal electrodes. Journal of Applied Physics, 2007, 101, 024320.	1.1	103
69	High Yield Growth of Various CdS Nano-Structures and Their Electron Field Emission Behavior. Materials Research Society Symposia Proceedings, 2006, 963, 1.	0.1	1
70	Tailoring Carbon Nanotubes to Designed Morphologies for Electron Field Emission Applications. , 2006, , .		0
71	METHODS FOR DISPERSION AND ALIGNMENT OF SINGLE-WALLED CARBON NANOTUBES AND EFFECTS ON THEIR STRUCTURAL AND ELECTRONIC PROPERTIES. International Journal of Nanoscience, 2006, 05, 407-411.	0.4	0
72	FABRICATION AND ELECTRON MICROSCOPY CHARACTERIZATION OF METAL-GATED CARBON NANOTUBE EMITTER ARRAYS. International Journal of Nanoscience, 2006, 05, 579-583.	0.4	3

#	Article	IF	CITATIONS
73	Electron Microscopy Study of Exotic Nanostructures of Cadmium Sulfide. Microscopy and Microanalysis, 2005, 11, 116-123.	0.2	13
74	Biosynthesis and Electron Microscopy Characterization of Diatom Nanocomposites. Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	0
75	Effects of Dielectrophoretic Parameters on Fabrication and Electronic Properties of Single-Walled Carbon Nanotube Devices. Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	0
76	Blue Luminescent Biogenic Silicon-Germanium Oxide Nanocomposites. Materials Research Society Symposia Proceedings, 2005, 873, 1.	0.1	3
77	Synthesis, Characterization, and Growth Mechanism of Silicon Oxide Nanowires. Materials Research Society Symposia Proceedings, 2005, 879, 1.	0.1	0
78	Effect of Diameter on Electron Field Emission of Carbon Nanotube Bundles. Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	3
79	Dielectrophoretically Controlled Fabrication of Single-Crystal Nickel Silicide Nanowire Interconnects. Nano Letters, 2005, 5, 2112-2115.	4.5	116
80	Air flow technique for large scale dispersion and alignment of carbon nanotubes on various substrates. Applied Physics Letters, 2005, 86, 143111.	1.5	44
81	Atomically Resolved STM Images of CVD Grown Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2004, 838, 43.	0.1	0
82	Effects of catalysts on the internal structures of carbon nanotubes and corresponding electron field-emission properties. Applied Physics A: Materials Science and Processing, 2004, 78, 9-14.	1.1	36
83	In situ alignment of carbon nanocoils and their field emission behavior induced by an electric field. Applied Physics A: Materials Science and Processing, 2004, 79, 2049-2054.	1.1	6
84	Synthesis, Characterization, and Growth Mechanism of Self-Assembled Dendritic CdS Nanorods. Journal of Physical Chemistry B, 2004, 108, 1617-1620.	1.2	45
85	Catalytic growth of CdS nanobelts and nanowires on tungsten substrates. Chemical Physics Letters, 2003, 376, 653-658.	1.2	110
86	ZnO nanowires formed on tungsten substrates and their electron field emission properties. Applied Physics Letters, 2003, 82, 1096-1098.	1.5	180
87	Synthesis and Characterization of WOx Nanowires and their Conversion to WS2 Nanotubes. Materials Research Society Symposia Proceedings, 2003, 794, 71.	0.1	0
88	High-yield synthesis of carbon coils on tungsten substrates and their behavior in the presence of an electric field. Journal of Materials Research, 2003, 18, 2580-2587.	1.2	18
89	Selected-Area Growth of Carbon Nanotubes by the Combination of Focused Ion Beam and Chemical Vapor Deposition Techniques. Microscopy and Microanalysis, 2003, 9, 516-521.	0.2	5
90	High Resolution Electron Microscopy and Spectroscopy Characterization of Tungsten Oxide Nanowires. Microscopy and Microanalysis, 2003, 9, 336-337.	0.2	0

#	Article	IF	CITATIONS
91	Electron Microscopy Study of Exotic Nanostructures of Cadmium Sulfide Prepared by Catalytic Thermal Evaporation. Microscopy and Microanalysis, 2003, 9, 430-431.	0.2	1
92	Synthesis of Carbon Microcoils and Nanocoils on Various Substrates. Materials Research Society Symposia Proceedings, 2003, 775, 9211.	0.1	0
93	Effects of Hydrogen on the Formation of Aligned Carbon Nanotubes by Chemical Vapor Deposition. Journal of Nanoscience and Nanotechnology, 2002, 2, 155-160.	0.9	25
94	Electrodeposition of Ni Catalyst on Tungsten Substrates and Its Effect on the Formation of Carbon Nano- and Micro-coils. Materials Research Society Symposia Proceedings, 2002, 740, 1.	0.1	2
95	Synthesis of SiO2 Nanowires and CdS/SiO2 Composite Nanowires and Investigation of Their Electron Field Emission Properties. Materials Research Society Symposia Proceedings, 2002, 739, 541.	0.1	1
96	Focused Ion Beam Assisted Nanofabrication – Patterned Growth of Carbon Nanotubes. Microscopy and Microanalysis, 2002, 8, 1142-1143.	0.2	2
97	Growth of Carbon Nanotubes with Controlled Morphologies. Materials Research Society Symposia Proceedings, 2002, 728, 8211.	0.1	3
98	Synthesis and Characterization of Carbon Nanotubes on Porous Silicon Substrates. Microscopy and Microanalysis, 2001, 7, 398-399.	0.2	2
99	High Resolution TEM and EDX Investigation of Metal Coated Nanoparticles. Microscopy and Microanalysis, 2001, 7, 388-389.	0.2	0
100	Fabrication and Characterization of Carbon Nanotube Field Emitters. Materials Research Society Symposia Proceedings, 2001, 706, 1.	0.1	3
101	Effect of annealing conditions on the formation of low-dose SIMOX structures implanted at 190 keV. Journal of Materials Science: Materials in Electronics, 2001, 12, 537-542.	1.1	3
102	Single-walled tubes and encapsulated nanoparticles: comparison of structural properties of carbon nanoclusters prepared by three different methods. Journal of Physics and Chemistry of Solids, 2000, 61, 1055-1067.	1.9	43
103	Formation of Si islands in the buried oxide layers of ultra-thin SIMOX structures implanted at 65 keV. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 72, 150-155.	1.7	33