Ludovic Leclercq

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4283396/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of Trip Lengths Calibration in Model-Based Perimeter Control Strategies. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 5176-5186.	4.7	4
2	Experimental assessment of traffic density estimation at link and network level with sparse data. Transportmetrica B, 2022, 10, 368-395.	1.4	0
3	Space-time clustering-based method to optimize shareability in real-time ride-sharing. PLoS ONE, 2022, 17, e0262499.	1.1	2
4	Mode shift with tradable credit scheme: a simulation study in Lyon. Transportation Research Procedia, 2022, 62, 229-235.	0.8	0
5	Modal equilibrium of a tradable credit scheme with a trip-based MFD and logit-based decision-making. Transportation Research Part C: Emerging Technologies, 2022, 139, 103642.	3.9	11
6	Departure Time Choice Models in Urban Transportation Systems Based on Mean Field Games. Transportation Science, 2022, 56, 1483-1504.	2.6	8
7	Travel time and bounded rationality in travellers' route choice behaviour: A computer route choice experiment. Travel Behaviour & Society, 2021, 22, 59-83.	2.4	17
8	Computational Methods for Calculating Multimodal Multiclass Traffic Network Equilibrium: Simulation Benchmark on a Large-Scale Test Case. Journal of Advanced Transportation, 2021, 2021, 1-17.	0.9	7
9	Can dynamic ride-sharing reduce traffic congestion?. Transportation Research Part B: Methodological, 2021, 145, 212-246.	2.8	44
10	Assessing traveler compliance with the social optimum: A stated preference study. Travel Behaviour & Society, 2021, 23, 177-191.	2.4	7
11	Refining trip starting and ending locations when estimating travel-demand at large urban scale. Journal of Transport Geography, 2021, 93, 103041.	2.3	1
12	Disentangling the city traffic rhythms: A longitudinal analysis of MFD patterns over a year. Transportation Research Part C: Emerging Technologies, 2021, 126, 103065.	3.9	30
13	Identification and characterizing of the prevailing paths on a urban network for MFD-based applications. Transportation Research Part C: Emerging Technologies, 2021, 127, 102953.	3.9	14
14	Dynamic Traffic Assignment for regional networks with traffic-dependent trip lengths and regional paths. Transportation Research Part C: Emerging Technologies, 2021, 127, 103076.	3.9	12
15	Enforcing optimal routing through dynamic avoidance maps. Transportation Research Part B: Methodological, 2021, 149, 118-137.	2.8	9
16	On the optimization of the bus network design: An analytical approach based on the three-dimensional macroscopic fundamental diagram. Transportation Research Part B: Methodological, 2021, 149, 393-417.	2.8	15
17	Estimation of urban zonal speed dynamics from user-activity-dependent positioning data and regional paths. Transportation Research Part C: Emerging Technologies, 2021, 129, 103183.	3.9	6
18	Unravelling System Optimums by trajectory data analysis and machine learning. Transportation Research Part C: Emerging Technologies, 2021, 130, 103318.	3.9	0

#	Article	IF	CITATIONS
19	Empirical observations of multi-modal network-level models: Insights from the pNEUMA experiment. Transportation Research Part C: Emerging Technologies, 2021, 131, 103300.	3.9	22
20	Macroscopic network-level traffic models: Bridging fifty years of development toward the next era. Transportation Research Part C: Emerging Technologies, 2021, 131, 103334.	3.9	32
21	Improving traffic network performance with road banning strategy: A simulation approach comparing user equilibrium and system optimum. Simulation Modelling Practice and Theory, 2020, 99, 101995.	2.2	15
22	The reference point in dynamic Prospect-based User Equilibrium: a simulation study. Transportation Letters, 2020, 12, 513-527.	1.8	4
23	Perimeter gating control and citywide dynamic user equilibrium: A macroscopic modeling framework. Transportation Research Part C: Emerging Technologies, 2020, 111, 22-49.	3.9	43
24	A Sequential Clustering Method for the Taxi-Dispatching Problem Considering Traffic Dynamics. IEEE Intelligent Transportation Systems Magazine, 2020, 12, 169-181.	2.6	11
25	Estimating MFDs, trip lengths and path flow distributions in a multi-region setting using mobile phone data. Transportation Research Part C: Emerging Technologies, 2020, 118, 102709.	3.9	40
26	Empirical Validation of Bimodal MFD Models. Frontiers in Future Transportation, 2020, 1, .	1.3	5
27	Calibration and validation of multi-reservoir MFD models: A case study in Lyon. Transportation Research Part B: Methodological, 2020, 136, 62-86.	2.8	46
28	Simulationâ€based dynamic traffic assignment: Metaâ€heuristic solution methods with parallel computing. Computer-Aided Civil and Infrastructure Engineering, 2020, 35, 1047-1062.	6.3	25
29	Minimizing network-wide emissions by optimal routing through inner-city gating. Transportation Research, Part D: Transport and Environment, 2020, 86, 102411.	3.2	12
30	Bi-modal macroscopic traffic dynamics in a single region. Transportation Research Part B: Methodological, 2020, 133, 257-290.	2.8	32
31	Crossâ€comparison of convergence algorithms to solve tripâ€based dynamic traffic assignment problems. Computer-Aided Civil and Infrastructure Engineering, 2020, 35, 219-240.	6.3	20
32	Regional dynamic traffic assignment with bounded rational drivers as a tool for assessing the emissions in large metropolitan areas. Transportation Research Interdisciplinary Perspectives, 2020, 8, 100248.	1.6	4
33	Dynamics of Flow Merging and Diverging in MFD-Based Systems: Validation vs. Microsimulation. Frontiers in Future Transportation, 2020, 1, .	1.3	5
34	A Multi-agent System for Real-Time Ride Sharing in Congested Networks. Smart Innovation, Systems and Technologies, 2020, , 333-342.	0.5	4
35	Real-Time Autonomous Taxi Service: AnÂAgent-Based Simulation. Smart Innovation, Systems and Technologies, 2020, , 199-207.	0.5	5
36	Unravelling travellers' route choice behaviour at full-scale urban network by focusing on representative OD pairs in computer experiments. PLoS ONE, 2019, 14, e0225069.	1.1	4

#	Article	IF	CITATIONS
37	Macroscopic Traffic Dynamics Under Fast-Varying Demand. Transportation Science, 2019, 53, 1526-1545.	2.6	21
38	Nonlinear Model Predictive Control to Reduce Network-Wide Traffic Emission. IFAC-PapersOnLine, 2019, 52, 19-24.	0.5	2
39	Regional Dynamic Traffic Assignment Framework for Macroscopic Fundamental Diagram Multi-regions Models. Transportation Science, 2019, 53, 1563-1590.	2.6	38
40	Heterogeneous perimeter flow distributions and MFD-based traffic simulation. Transportmetrica B, 2019, 7, 1378-1401.	1.4	5
41	Flow exchanges in multi-reservoir systems with spillbacks. Transportation Research Part B: Methodological, 2019, 122, 327-349.	2.8	52
42	Estimation of regional trip length distributions for the calibration of the aggregated network traffic models. Transportation Research Part B: Methodological, 2019, 122, 192-217.	2.8	43
43	Validation of Macroscopic Fundamental Diagrams-Based Models with Microscopic Simulations on Real Networks: Importance of Production Hysteresis and Trip Lengths Estimation. Transportation Research Record, 2019, 2673, 478-492.	1.0	16
44	Microscopic Simulation of Cruising for Parking of Trucks as a Measure to Manage Freight Loading Zone. Sustainability, 2019, 11, 1276.	1.6	17
45	Calibration of Gipps' carâ€following model for trucks and the impacts on fuel consumption estimation. IET Intelligent Transport Systems, 2019, 13, 367-375.	1.7	13
46	Comparing bus holding methods with and without real-time predictions. Transportation Research Part C: Emerging Technologies, 2018, 87, 197-211.	3.9	57
47	Minimal parameter formulations of the dynamic user equilibrium using macroscopic urban models: Freeway vs city streets revisited. Transportation Research Part B: Methodological, 2018, 117, 676-686.	2.8	22
48	A Global Sensitivity Analysis of Dynamic Loading and Route Selection Parameters on Network Performances. Journal of Advanced Transportation, 2018, 2018, 1-24.	0.9	3
49	Empirical MFDs using Google Traffic Data. , 2018, , .		6
50	Effects of Users' Bounded Rationality on a Traffic Network Performance: A Simulation Study. Journal of Advanced Transportation, 2018, 2018, 1-20.	0.9	12
51	Graphical solution for system optimum dynamic traffic assignment with day-based incentive routing strategies. Transportation Research Part B: Methodological, 2018, 117, 87-100.	2.8	14
52	Accounting for traffic speed dynamics when calculating COPERT and PHEM pollutant emissions at the urban scale. Transportation Research, Part D: Transport and Environment, 2018, 63, 588-603.	3.2	67
53	Perimeter Control as an Alternative to Dedicated Bus Lanes: A Case Study. Transportation Research Record, 2018, 2672, 110-120.	1.0	16
54	Clustering route choices methodology for network performance analysis. Transportmetrica B, 2017, 5, 191-210.	1.4	2

#	Article	IF	CITATIONS
55	Capacity drop: a comparison between stop-and-go wave and standing queue at lane-drop bottleneck. Transportmetrica B, 2017, 5, 145-158.	1.4	19
56	Macroscopic urban dynamics: Analytical and numerical comparisons of existing models. Transportation Research Part B: Methodological, 2017, 101, 245-267.	2.8	110
57	Dynamic macroscopic simulation of on-street parking search: A trip-based approach. Transportation Research Part B: Methodological, 2017, 101, 268-282.	2.8	72
58	Revealing the day-to-day regularity of urban congestion patterns with 3D speed maps. Scientific Reports, 2017, 7, 14029.	1.6	64
59	Minimal Parameter Formulations of the Dynamic User Equilibrium using Macroscopic Urban Models: Freeway vs City Streets Revisited. Transportation Research Procedia, 2017, 23, 517-530.	0.8	11
60	Spatiotemporal Partitioning of Transportation Network Using Travel Time Data. Transportation Research Record, 2017, 2623, 98-107.	1.0	48
61	Data Assimilation Using a Mesoscopic Lighthill–Whitham–Richards Model and Loop Detector Data: Methodology and Large-Scale Network Application. Transportation Research Record, 2016, 2560, 26-36.	1.0	10
62	Effect of Traffic Modeling on Control of Traffic Networks. Transportation Research Record, 2016, 2560, 47-56.	1.0	2
63	Capacity drops at merges: New analytical investigations. Transportation Research Part C: Emerging Technologies, 2016, 62, 171-181.	3.9	41
64	Capacity Drops at Merges: Analytical Expressions for Multilane Freeways. Transportation Research Record, 2016, 2560, 1-9.	1.0	8
65	The Lagrangian coordinate system and what it means for two-dimensional crowd flow models. Physica A: Statistical Mechanics and Its Applications, 2016, 443, 272-285.	1.2	5
66	Multiscale Traffic Flow Model Based on the Mesoscopic Lighthill–Whitham and Richards Models. Transportation Research Record, 2015, 2491, 98-106.	1.0	10
67	Applying variational theory to travel time estimation on urban arterials. Transportation Research Part B: Methodological, 2015, 78, 169-181.	2.8	33
68	Macroscopic traffic dynamics with heterogeneous route patterns. Transportation Research Part C: Emerging Technologies, 2015, 59, 292-307.	3.9	71
69	Does traffic-related calibration of car-following models provide accurate estimations of vehicle emissions?. Transportation Research, Part D: Transport and Environment, 2015, 34, 267-280.	3.2	43
70	Macroscopic Traffic Dynamics with Heterogeneous Route Patterns. Transportation Research Procedia, 2015, 7, 631-650.	0.8	16
71	A Macroscopic Model for Freeway Weaving Sections. Computer-Aided Civil and Infrastructure Engineering, 2015, 30, 464-477.	6.3	19
72	Real-time Bus Route State Forecasting Using Particle Filter: An Empirical Data Application. Transportation Research Procedia, 2015, 6, 434-447.	0.8	5

5

#	Article	IF	CITATIONS
73	Real-time bus route state forecasting using particle filter and mesoscopic modeling. Transportation Research Part C: Emerging Technologies, 2015, 61, 121-140.	3.9	39
74	Investigating the irregularity of bus routes: highlighting how underlying assumptions of bus models impact the regularity results. Journal of Advanced Transportation, 2015, 49, 358-370.	0.9	21
75	Capacity drops at merges: New analytical investigations. , 2014, , .		1
76	Macroscopic Fundamental Diagrams: A cross-comparison of estimation methods. Transportation Research Part B: Methodological, 2014, 62, 1-12.	2.8	155
77	Performance analysis for different designs of a multimodal urban arterial. Transportmetrica B, 2014, 2, 229-245.	1.4	30
78	Clustering Approach for Assessing the Travel Time Variability of Arterials. Transportation Research Record, 2014, 2422, 42-49.	1.0	19
79	Corrigendum to "Estimating MFDs in Simple Networks with Route Choice― Procedia, Social and Behavioral Sciences, 2013, 80, 960-979.	0.5	5
80	The Hamilton–Jacobi partial differential equation and the three representations of traffic flow. Transportation Research Part B: Methodological, 2013, 52, 17-30.	2.8	81
81	Estimating MFDs in simple networks with route choice. Transportation Research Part B: Methodological, 2013, 57, 468-484.	2.8	99
82	Are vehicle trajectories simulated by dynamic traffic models relevant for estimating fuel consumption?. Transportation Research, Part D: Transport and Environment, 2013, 24, 17-26.	3.2	13
83	Macroscopic Fundamental Diagram for Urban Streets and Mixed Traffic. Transportation Research Record, 2013, 2390, 1-10.	1.0	18
84	Estimating MFDs in Simple Networks with Route Choice. Procedia, Social and Behavioral Sciences, 2013, 80, 99-118.	0.5	32
85	How Simplifying Urban Driving Cycles Influence Fuel Consumption Estimation?. Procedia, Social and Behavioral Sciences, 2012, 48, 1000-1009.	0.5	4
86	Improving Bus Transit in Cities with Appropriate Dynamic Lane Allocating Strategies. Procedia, Social and Behavioral Sciences, 2012, 48, 1472-1481.	0.5	15
87	Estimation of Pollutant Emissions from the Road Traffic at a City Scale, and Its Sensitivity as Regards the Calibration of the Static Traffic Assignment Models. Procedia, Social and Behavioral Sciences, 2012, 48, 2091-2100.	0.5	2
88	Road Capacity and Travel Times with Bus Lanes and Intermittent Priority Activation. Transportation Research Record, 2012, 2315, 182-190.	1.0	44
89	Capacity drops at merges: An endogenous model. Transportation Research Part B: Methodological, 2011, 45, 1302-1313.	2.8	80
90	Capacity Drops at Merges: an endogenous model. Procedia, Social and Behavioral Sciences, 2011, 17, 12-26.	0.5	77

#	Article	IF	CITATIONS
91	Cross-comparison of Macroscopic Fundamental Diagram Estimation Methods. Procedia, Social and Behavioral Sciences, 2011, 20, 417-426.	0.5	54
92	Wave Velocity Estimation through Automatic Analysis of Cumulative Vehicle Count Curves. Transportation Research Record, 2011, 2249, 1-6.	1.0	20
93	"A Note on the Entropy Solutions of the Hydrodynamic Model of Traffic Flow―Revisited. Transportation Science, 2011, 45, 138-142.	2.6	3
94	Dynamic Traffic Modeling for Noise Impact Assessment of Traffic Strategies. Acta Acustica United With Acustica, 2010, 96, 482-493.	0.8	18
95	Traffic noise spectrum analysis: Dynamic modeling vs. experimental observations. Applied Acoustics, 2010, 71, 764-770.	1.7	101
96	A mechanism to describe the formation and propagation of stop-and-go waves in congested freeway traffic. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 4519-4541.	1.6	197
97	Continuum Approximation for Congestion Dynamics Along Freeway Corridors. Transportation Science, 2010, 44, 87-97.	2.6	13
98	From heterogeneous drivers to macroscopic patterns in congestion. Transportation Research Part B: Methodological, 2010, 44, 299-308.	2.8	68
99	Microscopic Dual-Regime Model for Single-Lane Roundabouts. Journal of Transportation Engineering, 2009, 135, 386-394.	0.9	10
100	Improving noise assessment at intersections by modeling traffic dynamics. Transportation Research, Part D: Transport and Environment, 2009, 14, 100-110.	3.2	44
101	Do microscopic merging models reproduce the observed priority sharing ratio in congestion?. Transportation Research Part C: Emerging Technologies, 2009, 17, 328-336.	3.9	39
102	Dynamic noise modeling at roundabouts. Applied Acoustics, 2009, 70, 761-770.	1.7	37
103	Accounting for traffic dynamics improves noise assessment: Experimental evidence. Applied Acoustics, 2009, 70, 821-829.	1.7	31
104	Fundamental Diagram Estimation Through Passing Rate Measurements in Congestion. IEEE Transactions on Intelligent Transportation Systems, 2009, 10, 355-359.	4.7	68
105	Selecting Noise Source and Traffic Representations that Capture Road Traffic Noise Dynamics Near Traffic Signals. Acta Acustica United With Acustica, 2009, 95, 259-269.	0.8	5
106	A Multiclass Car-Following Rule Based on the LWR Model. , 2009, , 151-160.		6
107	Dynamic estimation of urban traffic noise: Influence of traffic and noise source representations. Applied Acoustics, 2008, 69, 858-867.	1.7	27
108	Capturing urban traffic noise dynamics through relevant descriptors. Applied Acoustics, 2008, 69, 1270-1280.	1.7	47

7

#	Article	IF	CITATIONS
109	A Macroscopic Single‣ane Roundabout Model to Account for Insertion Delays and O–D Patterns. Computer-Aided Civil and Infrastructure Engineering, 2008, 23, 104-115.	6.3	10
110	Microscopic modeling of the relaxation phenomenon using a macroscopic lane-changing model. Transportation Research Part B: Methodological, 2008, 42, 511-522.	2.8	174
111	Relaxation Phenomenon after Lane Changing. Transportation Research Record, 2007, 1999, 79-85.	1.0	66
112	Bounded acceleration close to fixed and moving bottlenecks. Transportation Research Part B: Methodological, 2007, 41, 309-319.	2.8	44
113	Hybrid approaches to the solutions of the "Lighthill–Whitham–Richards―model. Transportation Research Part B: Methodological, 2007, 41, 701-709.	2.8	70
114	A macroscopic theory for unsignalized intersections. Transportation Research Part B: Methodological, 2007, 41, 1139-1150.	2.8	38
115	Hybridization of a class of "second order―models of traffic flow. Simulation Modelling Practice and Theory, 2007, 15, 918-934.	2.2	6
116	Calibration of Flow–Density Relationships on Urban Streets. Transportation Research Record, 2005, 1934, 226-234.	1.0	13
117	Calibration of Flow-Density Relationships on Urban Streets. Transportation Research Record, 2005, 1934, 226-234.	1.0	15
118	Moving Bottlenecks in Lighthill-Whitham-Richards Model: A Unified Theory. Transportation Research Record, 2004, 1883, 3-13.	1.0	53
119	A traffic Flow Model for Urban Traffic Analysis: Extensions of the LWR Model for Urban and Environmental Applications. , 2002, , 393-415.		9
120	Evolution of multimodal final user equilibrium considering public transport network design history. Transportmetrica B, 0, , 1-31.	1.4	2